# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_client import Client import sys import os import criteo as criteo import time from paddle_serving_client.metric import auc import numpy as np py_version = sys.version_info[0] client = Client() client.load_client_config(sys.argv[1]) client.connect(["127.0.0.1:9292"]) batch = 1 buf_size = 100 dataset = criteo.CriteoDataset() dataset.setup(1000001) test_filelists = ["{}/part-0".format(sys.argv[2])] reader = dataset.infer_reader(test_filelists, batch, buf_size) label_list = [] prob_list = [] start = time.time() for ei in range(10000): if py_version == 2: data = reader().next() else: data = reader().__next__() feed_dict = {} feed_dict['dense_input'] = np.array(data[0][0]).astype("float32").reshape( 1, 13) feed_dict['dense_input.lod'] = [0, 1] for i in range(1, 27): tmp_data = np.array(data[0][i]).astype(np.int64) feed_dict["embedding_{}.tmp_0".format(i - 1)] = tmp_data.reshape( (1, len(data[0][i]))) feed_dict["embedding_{}.tmp_0.lod".format(i - 1)] = [0, 1] fetch_map = client.predict(feed=feed_dict, fetch=["prob"], batch=True) prob_list.append(fetch_map['prob'][0][1]) label_list.append(data[0][-1][0]) print(auc(label_list, prob_list)) end = time.time() print(end - start)