// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "core/general-server/op/general_reader_op.h" #include #include #include #include #include "core/general-server/op/general_infer_helper.h" #include "core/predictor/framework/infer.h" #include "core/predictor/framework/memory.h" #include "core/util/include/timer.h" namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::Timer; using baidu::paddle_serving::predictor::MempoolWrapper; using baidu::paddle_serving::predictor::general_model::Tensor; using baidu::paddle_serving::predictor::general_model::Request; using baidu::paddle_serving::predictor::general_model::FeedInst; using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; int conf_check(const Request *req, const std::shared_ptr &model_config) { int var_num = req->insts(0).tensor_array_size(); if (var_num != model_config->_feed_type.size()) { LOG(ERROR) << "feed var number not match: model config[" << model_config->_feed_type.size() << "] vs. actual[" << var_num << "]"; return -1; } VLOG(2) << "fetch var num in reader op: " << req->fetch_var_names_size(); for (int i = 0; i < var_num; ++i) { if (model_config->_feed_type[i] != req->insts(0).tensor_array(i).elem_type()) { LOG(ERROR) << "feed type not match."; return -1; } if (model_config->_feed_shape[i].size() == req->insts(0).tensor_array(i).shape_size()) { for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) { req->insts(0).tensor_array(i).shape(j); if (model_config->_feed_shape[i][j] != req->insts(0).tensor_array(i).shape(j)) { LOG(ERROR) << "feed shape not match."; return -1; } } } else { LOG(ERROR) << "feed shape not match."; return -1; } } return 0; } int GeneralReaderOp::inference() { // reade request from client const Request *req = dynamic_cast(get_request_message()); uint64_t log_id = req->log_id(); int input_var_num = 0; std::vector elem_type; std::vector elem_size; std::vector capacity; GeneralBlob *res = mutable_data(); TensorVector *out = &res->tensor_vector; res->SetLogId(log_id); if (!res) { LOG(ERROR) << "(logid=" << log_id << ") Failed get op tls reader object output"; } Timer timeline; int64_t start = timeline.TimeStampUS(); int var_num = req->insts(0).tensor_array_size(); VLOG(2) << "(logid=" << log_id << ") var num: " << var_num; VLOG(2) << "(logid=" << log_id << ") start to call load general model_conf op"; baidu::paddle_serving::predictor::Resource &resource = baidu::paddle_serving::predictor::Resource::instance(); VLOG(2) << "(logid=" << log_id << ") get resource pointer done."; std::shared_ptr model_config = resource.get_general_model_config(); VLOG(2) << "(logid=" << log_id << ") print general model config done."; // TODO(guru4elephant): how to do conditional check? /* int ret = conf_check(req, model_config); if (ret != 0) { LOG(ERROR) << "model conf of server:"; resource.print_general_model_config(model_config); return 0; } */ // package tensor elem_type.resize(var_num); elem_size.resize(var_num); capacity.resize(var_num); // prepare basic information for input for (int i = 0; i < var_num; ++i) { paddle::PaddleTensor lod_tensor; elem_type[i] = req->insts(0).tensor_array(i).elem_type(); VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i]; if (elem_type[i] == 0) { // int64 elem_size[i] = sizeof(int64_t); lod_tensor.dtype = paddle::PaddleDType::INT64; } else if (elem_type[i] == 1) { elem_size[i] = sizeof(float); lod_tensor.dtype = paddle::PaddleDType::FLOAT32; } else if (elem_type[i] == 2) { elem_size[i] = sizeof(int32_t); lod_tensor.dtype = paddle::PaddleDType::INT32; } // implement lod tensor here if (req->insts(0).tensor_array(i).lod_size() > 0) { VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is lod_tensor"; lod_tensor.lod.resize(1); for (int k = 0; k < req->insts(0).tensor_array(i).lod_size(); ++k) { lod_tensor.lod[0].push_back(req->insts(0).tensor_array(i).lod(k)); } capacity[i] = 1; for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) { int dim = req->insts(0).tensor_array(i).shape(k); VLOG(2) << "(logid=" << log_id << ") shape for var[" << i << "]: " << dim; capacity[i] *= dim; lod_tensor.shape.push_back(dim); } VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is tensor, capacity: " << capacity[i]; } else { capacity[i] = 1; for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) { int dim = req->insts(0).tensor_array(i).shape(k); VLOG(2) << "(logid=" << log_id << ") shape for var[" << i << "]: " << dim; capacity[i] *= dim; lod_tensor.shape.push_back(dim); } VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is tensor, capacity: " << capacity[i]; } lod_tensor.name = model_config->_feed_name[i]; out->push_back(lod_tensor); } // specify the memory needed for output tensor_vector for (int i = 0; i < var_num; ++i) { if (out->at(i).lod.size() == 1) { int tensor_size = 0; const Tensor &tensor = req->insts(0).tensor_array(i); int data_len = 0; if (tensor.int64_data_size() > 0) { data_len = tensor.int64_data_size(); } else if (tensor.float_data_size() > 0) { data_len = tensor.float_data_size(); } else if (tensor.int_data_size() > 0) { data_len = tensor.int_data_size(); } VLOG(2) << "(logid=" << log_id << ") tensor size for var[" << i << "]: " << data_len; tensor_size += data_len; int cur_len = out->at(i).lod[0].back(); VLOG(2) << "(logid=" << log_id << ") current len: " << cur_len; int sample_len = 0; if (tensor.shape_size() == 1) { sample_len = data_len; } else { sample_len = tensor.shape(0); } VLOG(2) << "(logid=" << log_id << ") new len: " << cur_len + sample_len; out->at(i).data.Resize(tensor_size * elem_size[i]); VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is lod_tensor and len=" << out->at(i).lod[0].back(); } else { out->at(i).data.Resize(capacity[i] * elem_size[i]); VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is tensor and capacity=" << capacity[i]; } } // fill the data into output general_blob for (int i = 0; i < var_num; ++i) { if (elem_type[i] == 0) { int64_t *dst_ptr = static_cast(out->at(i).data.data()); VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i << "] is " << req->insts(0).tensor_array(i).int64_data(0); int offset = 0; int elem_num = req->insts(0).tensor_array(i).int64_data_size(); for (int k = 0; k < elem_num; ++k) { dst_ptr[offset + k] = req->insts(0).tensor_array(i).int64_data(k); } } else if (elem_type[i] == 1) { float *dst_ptr = static_cast(out->at(i).data.data()); VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i << "] is " << req->insts(0).tensor_array(i).float_data(0); int offset = 0; int elem_num = req->insts(0).tensor_array(i).float_data_size(); for (int k = 0; k < elem_num; ++k) { dst_ptr[offset + k] = req->insts(0).tensor_array(i).float_data(k); } } else if (elem_type[i] == 2) { int32_t *dst_ptr = static_cast(out->at(i).data.data()); VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i << "] is " << req->insts(0).tensor_array(i).int_data(0); int offset = 0; int elem_num = req->insts(0).tensor_array(i).int_data_size(); for (int k = 0; k < elem_num; ++k) { dst_ptr[offset + k] = req->insts(0).tensor_array(i).int_data(k); } } } VLOG(2) << "(logid=" << log_id << ") output size: " << out->size(); timeline.Pause(); int64_t end = timeline.TimeStampUS(); res->p_size = 0; res->_batch_size = 1; AddBlobInfo(res, start); AddBlobInfo(res, end); VLOG(2) << "(logid=" << log_id << ") read data from client success"; return 0; } DEFINE_OP(GeneralReaderOp); } // namespace serving } // namespace paddle_serving } // namespace baidu