// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "demo-serving/op/bert_service_op.h" #include #include #include "predictor/framework/infer.h" #include "predictor/framework/memory.h" namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::predictor::MempoolWrapper; using baidu::paddle_serving::predictor::bert_service::BertResInstance; using baidu::paddle_serving::predictor::bert_service::Response; using baidu::paddle_serving::predictor::bert_service::BertReqInstance; using baidu::paddle_serving::predictor::bert_service::Request; using baidu::paddle_serving::predictor::bert_service::EmbeddingValues; std::vector split(const std::string &str, const std::string &pattern) { std::vector res; if (str == "") return res; std::string strs = str + pattern; size_t pos = strs.find(pattern); while (pos != strs.npos) { std::string temp = strs.substr(0, pos); res.push_back(temp); strs = strs.substr(pos + 1, strs.size()); pos = strs.find(pattern); } return res; } int BertServiceOp::inference() { timeval op_start; gettimeofday(&op_start, NULL); const Request *req = dynamic_cast(get_request_message()); TensorVector *in = butil::get_object(); Response *res = mutable_data(); uint32_t batch_size = req->instances_size(); if (batch_size <= 0) { LOG(WARNING) << "No instances need to inference!"; return 0; } const int64_t MAX_SEQ_LEN = req->max_seq_len(); // const int64_t EMB_SIZE = req->emb_size(); paddle::PaddleTensor src_ids; paddle::PaddleTensor pos_ids; paddle::PaddleTensor seg_ids; paddle::PaddleTensor input_masks; if (req->has_feed_var_names()) { // support paddlehub model std::vector feed_list = split(req->feed_var_names(), ";"); src_ids.name = feed_list[0]; pos_ids.name = feed_list[1]; seg_ids.name = feed_list[2]; input_masks.name = feed_list[3]; } else { src_ids.name = std::string("src_ids"); pos_ids.name = std::string("pos_ids"); seg_ids.name = std::string("sent_ids"); input_masks.name = std::string("input_mask"); } src_ids.dtype = paddle::PaddleDType::INT64; src_ids.shape = {batch_size, MAX_SEQ_LEN, 1}; src_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t)); pos_ids.dtype = paddle::PaddleDType::INT64; pos_ids.shape = {batch_size, MAX_SEQ_LEN, 1}; pos_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t)); seg_ids.dtype = paddle::PaddleDType::INT64; seg_ids.shape = {batch_size, MAX_SEQ_LEN, 1}; seg_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t)); input_masks.dtype = paddle::PaddleDType::FLOAT32; input_masks.shape = {batch_size, MAX_SEQ_LEN, 1}; input_masks.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(float)); std::vector> lod_set; lod_set.resize(1); for (uint32_t i = 0; i < batch_size; i++) { lod_set[0].push_back(i * MAX_SEQ_LEN); } // src_ids.lod = lod_set; // pos_ids.lod = lod_set; // seg_ids.lod = lod_set; // input_masks.lod = lod_set; uint32_t index = 0; for (uint32_t i = 0; i < batch_size; i++) { int64_t *src_data = static_cast(src_ids.data.data()) + index; int64_t *pos_data = static_cast(pos_ids.data.data()) + index; int64_t *seg_data = static_cast(seg_ids.data.data()) + index; float *input_masks_data = static_cast(input_masks.data.data()) + index; const BertReqInstance &req_instance = req->instances(i); memcpy(src_data, req_instance.token_ids().data(), sizeof(int64_t) * MAX_SEQ_LEN); memcpy(pos_data, req_instance.position_ids().data(), sizeof(int64_t) * MAX_SEQ_LEN); memcpy(seg_data, req_instance.sentence_type_ids().data(), sizeof(int64_t) * MAX_SEQ_LEN); memcpy(input_masks_data, req_instance.input_masks().data(), sizeof(float) * MAX_SEQ_LEN); index += MAX_SEQ_LEN; } in->push_back(src_ids); in->push_back(pos_ids); in->push_back(seg_ids); in->push_back(input_masks); TensorVector *out = butil::get_object(); if (!out) { LOG(ERROR) << "Failed get tls output object"; return -1; } #if 0 // print request std::ostringstream oss; for (int j = 0; j < 3; j++) { int64_t* example = reinterpret_cast((*in)[j].data.data()); for (uint32_t i = 0; i < MAX_SEQ_LEN; i++) { oss << *(example + i) << " "; } oss << ";"; } float* example = reinterpret_cast((*in)[3].data.data()); for (int i = 0; i < MAX_SEQ_LEN; i++) { oss << *(example + i) << " "; } LOG(INFO) << "msg: " << oss.str(); #endif timeval infer_start; gettimeofday(&infer_start, NULL); if (predictor::InferManager::instance().infer( BERT_MODEL_NAME, in, out, batch_size)) { LOG(ERROR) << "Failed do infer in fluid model: " << BERT_MODEL_NAME; return -1; } timeval infer_end; gettimeofday(&infer_end, NULL); uint64_t infer_time = (infer_end.tv_sec * 1000 + infer_end.tv_usec / 1000 - (infer_start.tv_sec * 1000 + infer_start.tv_usec / 1000)); LOG(INFO) << "batch_size : " << out->at(0).shape[0] << " emb_size : " << out->at(0).shape[1]; uint32_t emb_size = out->at(0).shape[1]; float *out_data = reinterpret_cast(out->at(0).data.data()); for (uint32_t bi = 0; bi < batch_size; bi++) { BertResInstance *res_instance = res->add_instances(); for (uint32_t si = 0; si < 1; si++) { EmbeddingValues *emb_instance = res_instance->add_instances(); for (uint32_t ei = 0; ei < emb_size; ei++) { uint32_t index = bi * emb_size + ei; emb_instance->add_values(out_data[index]); } } } timeval op_end; gettimeofday(&op_end, NULL); uint64_t op_time = (op_end.tv_sec * 1000 + op_end.tv_usec / 1000 - (op_start.tv_sec * 1000 + op_start.tv_usec / 1000)); res->set_op_time(op_time); res->set_infer_time(infer_time); for (size_t i = 0; i < in->size(); ++i) { (*in)[i].shape.clear(); } in->clear(); butil::return_object(in); for (size_t i = 0; i < out->size(); ++i) { (*out)[i].shape.clear(); } out->clear(); butil::return_object(out); return 0; } DEFINE_OP(BertServiceOp); } // namespace serving } // namespace paddle_serving } // namespace baidu