## Image Classification ([简体中文](./README_CN.md)|English) The example uses the ResNet50_vd model to perform the imagenet 1000 classification task. ### Get model config and sample dataset ``` sh get_model.sh ``` ### Install preprocess module ``` pip install paddle_serving_app ``` ### HTTP Service launch server side ``` python resnet50_web_service.py ResNet50_vd_model cpu 9696 #cpu inference service ``` ``` python resnet50_web_service.py ResNet50_vd_model gpu 9696 #gpu inference service ``` client send inference request ``` curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"image": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9696/image/prediction ``` ### RPC Service launch server side ``` python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 #cpu inference service ``` ``` python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9696 --gpu_ids 0 #gpu inference service ``` client send inference request ``` python resnet50_rpc_client.py ResNet50_vd_client_config/serving_client_conf.prototxt ``` *the port of server side in this example is 9696