// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "demo-serving/op/int64tensor_echo_op.h" namespace baidu { namespace paddle_serving { namespace predictor { using baidu::paddle_serving::predictor::format::Float32TensorPredictor; using baidu::paddle_serving::predictor::int64tensor_service::Request; using baidu::paddle_serving::predictor::int64tensor_service::Response; int Int64TensorEchoOp::inference() { const Request* req = dynamic_cast(get_request_message()); Response* res = mutable_data(); LOG(INFO) << "Receive request in dense service:" << req->ShortDebugString(); uint32_t sample_size = req->instances_size(); for (uint32_t si = 0; si < sample_size; si++) { Float32TensorPredictor* float32_tensor_res = res->mutable_predictions()->Add(); float32_tensor_res->add_data(1.0); float32_tensor_res->add_data(2.0); float32_tensor_res->add_shape(2); float32_tensor_res->add_shape(1); } return 0; } DEFINE_OP(Int64TensorEchoOp); } // namespace predictor } // namespace paddle_serving } // namespace baidu