# Hot Loading in Paddle Serving ([简体中文](HOT_LOADING_IN_SERVING_CN.md)|English) ## Background In the industrial scenario, it is usually the remote periodic output model, and the online server needs to pull down the new model to update the old model without service interruption. ## Server Monitor Paddle Serving provides an automatic monitoring script. After the remote address updates the model, the new model will be pulled to update the local model. At the same time, the `fluid_time_stamp` in the local model folder will be updated to realize model hot loading. Currently, the following types of Monitors are supported: | Monitor Type | Description | Specific options | | :----------: | :----------------------------------------------------------: | :----------------------------------------------------------: | | general | Without authentication, you can directly access the download file by `wget` (such as FTP and BOS which do not need authentication) | `general_host` General remote host. | | hdfs | The remote is HDFS or AFS, and relevant commands are executed through Hadoop-client | `hadoop_bin` Path of Hadoop binary file.
`fs_name` Hadoop fs_name. Not used if set in Hadoop-client.
`fs_ugi` Hadoop fs_ugi, Not used if set in Hadoop-client. | | ftp | The remote is FTP, and relevant commands are executed through `ftplib`(Using this monitor, you need to install `ftplib` with command `pip install ftplib`) | `ftp_host` FTP remote host.
`ftp_port` FTP remote port.
`ftp_username` FTP username. Not used if anonymous access.
`ftp_password` FTP password. Not used if anonymous access. | | Monitor Shared options | Description | Default | | :--------------------: | :----------------------------------------------------------: | :----------------------------------: | | `type` | Specify the type of monitor | / | | `remote_path` | Specify the base path for the remote | / | | `remote_model_name` | Specify the model name to be pulled from the remote | / | | `remote_donefile_name` | Specify the donefile name that marks the completion of the remote model update | / | | `local_path` | Specify local work path | / | | `local_model_name` | Specify local model name | / | | `local_timestamp_file` | Specify the timestamp file used locally for hot loading, The file is considered to be placed in the `local_path/local_model_name` folder. | `fluid_time_file` | | `local_tmp_path` | Specify the path of the folder where temporary files are stored locally. If it does not exist, it will be created automatically. | `_serving_monitor_tmp` | | `interval` | Specify the polling interval in seconds. | `10` | | `unpacked_filename` | Monitor supports the `tarfile` packaged remote model file. If the remote model is in a packaged format, you need to set this option to tell monitor the name of the extracted file. | `None` | | `debug` | If the `-- debug` option is added, more detailed intermediate information will be output. | This option is not added by default. | The following is an example of HDFSMonitor to show the model hot loading of Paddle Serving. ## HDFSMonitor example In this example, the production model is uploaded to HDFS in `product_path` folder, and the server hot loads the model in `server_path` folder: ```shell . ├── product_path └── server_path ``` ### Product model Run the following Python code products model in `product_path` folder. Every 60 seconds, the package file of Boston house price prediction model `uci_housing.tar.gz` will be generated and uploaded to the path of HDFS `/`. After uploading, the timestamp file `donefile` will be updated and uploaded to the path of HDFS `/`. ```python import os import sys import time import tarfile import paddle import paddle.fluid as fluid import paddle_serving_client.io as serving_io train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=16) test_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.test(), buf_size=500), batch_size=16) x = fluid.data(name='x', shape=[None, 13], dtype='float32') y = fluid.data(name='y', shape=[None, 1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_loss = fluid.layers.mean(cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01) sgd_optimizer.minimize(avg_loss) place = fluid.CPUPlace() feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) def push_to_hdfs(local_file_path, remote_path): hdfs_bin = '/hadoop-3.1.2/bin/hadoop' os.system('{} fs -put -f {} {}'.format( hdfs_bin, local_file_path, remote_path)) name = "uci_housing" for pass_id in range(30): for data_train in train_reader(): avg_loss_value, = exe.run(fluid.default_main_program(), feed=feeder.feed(data_train), fetch_list=[avg_loss]) # Simulate the production model every other period of time time.sleep(60) model_name = "{}_model".format(name) client_name = "{}_client".format(name) serving_io.save_model(model_name, client_name, {"x": x}, {"price": y_predict}, fluid.default_main_program()) # Packing model tar_name = "{}.tar.gz".format(name) tar = tarfile.open(tar_name, 'w:gz') tar.add(model_name) tar.close() # Push packaged model file to hdfs push_to_hdfs(tar_name, '/') # Generate donefile donefile_name = 'donefile' os.system('touch {}'.format(donefile_name)) # Push donefile to hdfs push_to_hdfs(donefile_name, '/') ``` The files on HDFS are as follows: ```bash # hadoop fs -ls / Found 2 items -rw-r--r-- 1 root supergroup 0 2020-04-02 02:54 /donefile -rw-r--r-- 1 root supergroup 2101 2020-04-02 02:54 /uci_housing.tar.gz ``` ### Server loading model Enter the `server_path` folder. #### Start server with the initial model Here, the trained Boston house price prediction model is used as the initial model: ```shell wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz tar -xzf uci_housing.tar.gz ``` Start Server: ```shell python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 ``` #### Execute monitor Use the following command to execute the HDFSMonitor: ```shell python -m paddle_serving_server.monitor \ --type='hdfs' --hadoop_bin='/hadoop-3.1.2/bin/hadoop' \ --remote_path='/' --remote_model_name='uci_housing.tar.gz' \ --remote_donefile_name='donefile' --local_path='.' \ --local_model_name='uci_housing_model' --local_timestamp_file='fluid_time_file' \ --local_tmp_path='_tmp' --unpacked_filename='uci_housing_model' --debug ``` The above code monitors the remote timestamp file `/donefile` of the remote HDFS address `/` every 10 seconds by polling. When the remote timestamp file changes, the remote model is considered to have been updated. Pull the remote packaging model `/uci_housing.tar.gz` to the local temporary path `./_tmp/uci_housing.tar.gz`. After unpacking to get the model file `./_tmp/uci_housing_model`, update the local model `./uci_housing_model` and the model timestamp file `./uci_housing_model/fluid_time_file` of Paddle Serving. The expected output is as follows: ```shell 2020-04-02 10:12 INFO [monitor.py:85] _hadoop_bin: /hadoop-3.1.2/bin/hadoop 2020-04-02 10:12 INFO [monitor.py:85] _fs_name: 2020-04-02 10:12 INFO [monitor.py:85] _fs_ugi: 2020-04-02 10:12 INFO [monitor.py:209] AFS prefix cmd: /hadoop-3.1.2/bin/hadoop fs 2020-04-02 10:12 INFO [monitor.py:85] _remote_path: / 2020-04-02 10:12 INFO [monitor.py:85] _remote_model_name: uci_housing.tar.gz 2020-04-02 10:12 INFO [monitor.py:85] _remote_donefile_name: donefile 2020-04-02 10:12 INFO [monitor.py:85] _local_model_name: uci_housing_model 2020-04-02 10:12 INFO [monitor.py:85] _local_path: . 2020-04-02 10:12 INFO [monitor.py:85] _local_timestamp_file: fluid_time_file 2020-04-02 10:12 INFO [monitor.py:85] _local_tmp_path: _tmp 2020-04-02 10:12 INFO [monitor.py:85] _interval: 10 2020-04-02 10:12 DEBUG [monitor.py:214] check cmd: /hadoop-3.1.2/bin/hadoop fs -ls /donefile 2>/dev/null 2020-04-02 10:12 DEBUG [monitor.py:216] resp: -rw-r--r-- 1 root supergroup 0 2020-04-02 10:11 /donefile 2020-04-02 10:12 INFO [monitor.py:138] doneilfe(donefile) changed. 2020-04-02 10:12 DEBUG [monitor.py:233] pull cmd: /hadoop-3.1.2/bin/hadoop fs -get /uci_housing.tar.gz _tmp/uci_housing.tar.gz 2>/dev/null 2020-04-02 10:12 INFO [monitor.py:144] pull remote model(uci_housing.tar.gz). 2020-04-02 10:12 INFO [monitor.py:98] unpack remote file(uci_housing.tar.gz). 2020-04-02 10:12 DEBUG [monitor.py:108] remove packed file(uci_housing.tar.gz). 2020-04-02 10:12 INFO [monitor.py:110] using unpacked filename: uci_housing_model. 2020-04-02 10:12 DEBUG [monitor.py:175] update model cmd: cp -r _tmp/uci_housing_model/* ./uci_housing_model 2020-04-02 10:12 INFO [monitor.py:152] update local model(uci_housing_model). 2020-04-02 10:12 DEBUG [monitor.py:184] update timestamp cmd: touch ./uci_housing_model/fluid_time_file 2020-04-02 10:12 INFO [monitor.py:157] update model timestamp(fluid_time_file). 2020-04-02 10:12 INFO [monitor.py:161] sleep 10s. 2020-04-02 10:12 DEBUG [monitor.py:214] check cmd: /hadoop-3.1.2/bin/hadoop fs -ls /donefile 2>/dev/null 2020-04-02 10:12 DEBUG [monitor.py:216] resp: -rw-r--r-- 1 root supergroup 0 2020-04-02 10:11 /donefile 2020-04-02 10:12 INFO [monitor.py:161] sleep 10s. ``` #### View server logs View the running log of the server with the following command: ```shell tail -f log/serving.INFO ``` The log shows that the model has been hot loaded: ```shell I0330 09:38:40.087316 7361 server.cpp:150] Begin reload framework... W0330 09:38:40.087399 7361 infer.h:656] Succ reload version engine: 18446744073709551615 I0330 09:38:40.087414 7361 manager.h:131] Finish reload 1 workflow(s) I0330 09:38:50.087535 7361 server.cpp:150] Begin reload framework... W0330 09:38:50.087641 7361 infer.h:250] begin reload model[uci_housing_model]. I0330 09:38:50.087972 7361 infer.h:66] InferEngineCreationParams: model_path = uci_housing_model, enable_memory_optimization = 0, static_optimization = 0, force_update_static_cache = 0 I0330 09:38:50.088027 7361 analysis_predictor.cc:88] Profiler is deactivated, and no profiling report will be generated. I0330 09:38:50.088393 7361 analysis_predictor.cc:841] MODEL VERSION: 1.7.1 I0330 09:38:50.088413 7361 analysis_predictor.cc:843] PREDICTOR VERSION: 1.6.3 I0330 09:38:50.089519 7361 graph_pattern_detector.cc:96] --- detected 1 subgraphs I0330 09:38:50.090925 7361 analysis_predictor.cc:470] ======= optimize end ======= W0330 09:38:50.090986 7361 infer.h:472] Succ load common model[0x7fc83c06abd0], path[uci_housing_model]. I0330 09:38:50.091022 7361 analysis_predictor.cc:88] Profiler is deactivated, and no profiling report will be generated. W0330 09:38:50.091050 7361 infer.h:509] td_core[0x7fc83c0ad770] clone model from pd_core[0x7fc83c06abd0] succ, cur_idx[0]. ... W0330 09:38:50.091784 7361 infer.h:489] Succ load clone model, path[uci_housing_model] W0330 09:38:50.091794 7361 infer.h:656] Succ reload version engine: 18446744073709551615 I0330 09:38:50.091820 7361 manager.h:131] Finish reload 1 workflow(s) I0330 09:39:00.091987 7361 server.cpp:150] Begin reload framework... W0330 09:39:00.092161 7361 infer.h:656] Succ reload version engine: 18446744073709551615 I0330 09:39:00.092177 7361 manager.h:131] Finish reload 1 workflow(s) ```