# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing, doc-string-with-all-args, doc-string-with-returns import sys import time import numpy as np import paddle import paddle.fluid as fluid def bow_net(data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2): """ bow net. """ emb = fluid.layers.embedding( input=data, size=[dict_dim, emb_dim], is_sparse=True) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bow_tanh = fluid.layers.tanh(bow) fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) return avg_cost, acc, prediction def cnn_net(data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2, win_size=3): """ conv net. """ emb = fluid.layers.embedding( input=data, size=[dict_dim, emb_dim], is_sparse=True) conv_3 = fluid.nets.sequence_conv_pool( input=emb, num_filters=hid_dim, filter_size=win_size, act="tanh", pool_type="max") fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2) prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) return avg_cost, acc, prediction def lstm_net(data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2, emb_lr=30.0): """ lstm net. """ emb = fluid.layers.embedding( input=data, size=[dict_dim, emb_dim], param_attr=fluid.ParamAttr(learning_rate=emb_lr), is_sparse=True) fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4) lstm_h, c = fluid.layers.dynamic_lstm( input=fc0, size=hid_dim * 4, is_reverse=False) lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max') lstm_max_tanh = fluid.layers.tanh(lstm_max) fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh') prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) return avg_cost, acc, prediction def gru_net(data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2, emb_lr=400.0): """ gru net. """ emb = fluid.layers.embedding( input=data, size=[dict_dim, emb_dim], param_attr=fluid.ParamAttr(learning_rate=emb_lr)) fc0 = fluid.layers.fc(input=emb, size=hid_dim * 3) gru_h = fluid.layers.dynamic_gru(input=fc0, size=hid_dim, is_reverse=False) gru_max = fluid.layers.sequence_pool(input=gru_h, pool_type='max') gru_max_tanh = fluid.layers.tanh(gru_max) fc1 = fluid.layers.fc(input=gru_max_tanh, size=hid_dim2, act='tanh') prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) return avg_cost, acc, prediction