# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_client import Client import sys import os import time from paddle_serving_client.metric import auc import numpy as np import sys class CriteoReader(object): def __init__(self, sparse_feature_dim): self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.cont_max_ = [ 20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.cont_diff_ = [ 20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.hash_dim_ = sparse_feature_dim # here, training data are lines with line_index < train_idx_ self.train_idx_ = 41256555 self.continuous_range_ = range(1, 14) self.categorical_range_ = range(14, 40) def process_line(self, line): features = line.rstrip('\n').split('\t') dense_feature = [] sparse_feature = [] for idx in self.continuous_range_: if features[idx] == '': dense_feature.append(0.0) else: dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \ self.cont_diff_[idx - 1]) for idx in self.categorical_range_: sparse_feature.append( [hash(str(idx) + features[idx]) % self.hash_dim_]) return sparse_feature py_version = sys.version_info[0] client = Client() client.load_client_config(sys.argv[1]) client.connect(["127.0.0.1:9292"]) reader = CriteoReader(1000001) batch = 1 buf_size = 100 label_list = [] prob_list = [] start = time.time() f = open(sys.argv[2], 'r') for ei in range(10): data = reader.process_line(f.readline()) feed_dict = {} for i in range(1, 27): feed_dict["sparse_{}".format(i - 1)] = np.array(data[i-1]).reshape(-1) feed_dict["sparse_{}.lod".format(i - 1)] = [0, len(data[i-1])] fetch_map = client.predict(feed=feed_dict, fetch=["prob"]) print(fetch_map) end = time.time() f.close()