# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client from paddle_serving_app.reader import OCRReader import cv2 import sys import numpy as np import os from paddle_serving_client import Client from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor from paddle_serving_app.reader import Div, Normalize, Transpose from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes if sys.argv[1] == 'gpu': from paddle_serving_server.web_service import WebService elif sys.argv[1] == 'cpu': from paddle_serving_server.web_service import WebService import time import re import base64 class OCRService(WebService): def init_rec(self): self.ocr_reader = OCRReader() def preprocess(self, feed=[], fetch=[]): img_list = [] for feed_data in feed: data = base64.b64decode(feed_data["image"].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) img_list.append(im) max_wh_ratio = 0 for i, boximg in enumerate(img_list): h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) _, w, h = self.ocr_reader.resize_norm_img(img_list[0], max_wh_ratio).shape imgs = np.zeros((len(img_list), 3, w, h)).astype('float32') for i, img in enumerate(img_list): norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) imgs[i] = norm_img feed = {"image": imgs.copy()} fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"] return feed, fetch, True def postprocess(self, feed={}, fetch=[], fetch_map=None): rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True) res_lst = [] for res in rec_res: res_lst.append(res[0]) res = {"res": res_lst} return res ocr_service = OCRService(name="ocr") ocr_service.load_model_config("ocr_rec_model") if sys.argv[1] == 'gpu': ocr_service.set_gpus("0") ocr_service.init_rec() ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu") elif sys.argv[1] == 'cpu': ocr_service.init_rec() ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu") ocr_service.run_debugger_service() ocr_service.run_web_service()