#encoding=utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np from paddle_serving_server.web_service import WebService from paddle_serving_client import Client from paddle_serving_app.reader import LACReader, SentaReader class SentaService(WebService): #初始化lac模型预测服务 def init_lac_client(self, lac_port, lac_client_config): self.lac_reader = LACReader() self.senta_reader = SentaReader() self.lac_client = Client() self.lac_client.load_client_config(lac_client_config) self.lac_client.connect(["127.0.0.1:{}".format(lac_port)]) #定义senta模型预测服务的预处理,调用顺序:lac reader->lac模型预测->预测结果后处理->senta reader def preprocess(self, feed=[], fetch=[]): feed_batch = [] is_batch = True words_lod = [0] for ins in feed: if "words" not in ins: raise ("feed data error!") feed_data = self.lac_reader.process(ins["words"]) words_lod.append(words_lod[-1] + len(feed_data)) feed_batch.append(np.array(feed_data).reshape(len(feed_data), 1)) words = np.concatenate(feed_batch, axis=0) lac_result = self.lac_client.predict( feed={"words": words, "words.lod": words_lod}, fetch=["crf_decode"], batch=True) result_lod = lac_result["crf_decode.lod"] feed_batch = [] words_lod = [0] for i in range(len(feed)): segs = self.lac_reader.parse_result( feed[i]["words"], lac_result["crf_decode"][result_lod[i]:result_lod[i + 1]]) feed_data = self.senta_reader.process(segs) feed_batch.append(np.array(feed_data).reshape(len(feed_data), 1)) words_lod.append(words_lod[-1] + len(feed_data)) return { "words": np.concatenate(feed_batch), "words.lod": words_lod }, fetch, is_batch senta_service = SentaService(name="senta") senta_service.load_model_config("senta_bilstm_model") senta_service.prepare_server(workdir="workdir") senta_service.init_lac_client( lac_port=9300, lac_client_config="lac_model/serving_server_conf.prototxt") senta_service.run_rpc_service() senta_service.run_web_service()