# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np class ImageReader(): def __init__(self, image_shape=[3, 224, 224], image_mean=[0.485, 0.456, 0.406], image_std=[0.229, 0.224, 0.225], resize_short_size=256, interpolation=None, crop_center=True): self.image_mean = image_mean self.image_std = image_std self.image_shape = image_shape self.resize_short_size = resize_short_size self.interpolation = interpolation self.crop_center = crop_center def resize_short(self, img, target_size, interpolation=None): """resize image Args: img: image data target_size: resize short target size interpolation: interpolation mode Returns: resized image data """ percent = float(target_size) / min(img.shape[0], img.shape[1]) resized_width = int(round(img.shape[1] * percent)) resized_height = int(round(img.shape[0] * percent)) if interpolation: resized = cv2.resize( img, (resized_width, resized_height), interpolation=interpolation) else: resized = cv2.resize(img, (resized_width, resized_height)) return resized def crop_image(self, img, target_size, center): """crop image Args: img: images data target_size: crop target size center: crop mode Returns: img: cropped image data """ height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) // 2 h_start = (height - size) // 2 else: w_start = np.random.randint(0, width - size + 1) h_start = np.random.randint(0, height - size + 1) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img def process_image(self, sample): """ process_image """ mean = self.image_mean std = self.image_std crop_size = self.image_shape[1] data = np.fromstring(sample, np.uint8) img = cv2.imdecode(data, cv2.IMREAD_COLOR) if img is None: print("img is None, pass it.") return None if crop_size > 0: target_size = self.resize_short_size img = self.resize_short( img, target_size, interpolation=self.interpolation) img = self.crop_image( img, target_size=crop_size, center=self.crop_center) img = img[:, :, ::-1] img = img.astype('float32').transpose((2, 0, 1)) / 255 img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) img -= img_mean img /= img_std return img