// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include "core/configure/include/configure_parser.h" #include "core/configure/inferencer_configure.pb.h" #include "core/predictor/common/utils.h" #include "core/predictor/framework/infer.h" #include "paddle_inference_api.h" // NOLINT namespace baidu { namespace paddle_serving { namespace inference { using paddle_infer::Config; using paddle_infer::PrecisionType; using paddle_infer::Predictor; using paddle_infer::Tensor; using paddle_infer::CreatePredictor; using paddle_infer::DistConfig; DECLARE_int32(gpuid); DECLARE_string(precision); DECLARE_bool(use_calib); DECLARE_string(nnadapter_device_names); DECLARE_string(nnadapter_context_properties); DECLARE_string(nnadapter_model_cache_dir); static const int max_batch = 32; static const int min_subgraph_size = 3; static PrecisionType precision_type; std::shared_ptr> PrepareWarmupData() { auto warmup_data = std::make_shared>(1); paddle::PaddleTensor images; images.name = "image"; images.shape = {2, 3, 300, 300}; images.dtype = paddle::PaddleDType::FLOAT32; images.data.Resize(sizeof(float) * 2 * 3 * 300 * 300); (*warmup_data)[0] = std::move(images); return warmup_data; } PrecisionType GetPrecision(const std::string& precision_data) { std::string precision_type = predictor::ToLower(precision_data); if (precision_type == "fp32") { return PrecisionType::kFloat32; } else if (precision_type == "int8") { return PrecisionType::kInt8; } else if (precision_type == "fp16") { return PrecisionType::kHalf; } return PrecisionType::kFloat32; } const std::string getFileBySuffix( const std::string& path, const std::vector& suffixVector) { DIR* dp = nullptr; std::string fileName = ""; struct dirent* dirp = nullptr; if ((dp = opendir(path.c_str())) == nullptr) { return fileName; } while ((dirp = readdir(dp)) != nullptr) { if (dirp->d_type == DT_REG) { for (int idx = 0; idx < suffixVector.size(); ++idx) { std::string fileName_in_Dir = static_cast(dirp->d_name); if (fileName_in_Dir.length() >= suffixVector[idx].length() && fileName_in_Dir.substr( fileName_in_Dir.length() - suffixVector[idx].length(), suffixVector[idx].length()) == suffixVector[idx]) { fileName = fileName_in_Dir; break; } } } if (fileName.length() != 0) break; } closedir(dp); return fileName; } // Engine Core is the base class of inference engines, which can be derived from // paddle Inference Engine, or inference engines of other machine learning // platforms class EngineCore { public: virtual ~EngineCore() {} virtual std::vector GetInputNames() { return _predictor->GetInputNames(); } virtual std::unique_ptr GetInputHandle(const std::string& name) { return _predictor->GetInputHandle(name); } virtual std::vector GetOutputNames() { return _predictor->GetOutputNames(); } virtual std::unique_ptr GetOutputHandle(const std::string& name) { return _predictor->GetOutputHandle(name); } virtual bool Run() { if (!_predictor->Run()) { LOG(ERROR) << "Failed call Run with paddle predictor"; return false; } return true; } virtual int create(const configure::EngineDesc& conf, int gpu_id) = 0; virtual int clone(void* predictor) { if (predictor == NULL) { LOG(ERROR) << "origin paddle Predictor is null."; return -1; } Predictor* prep = static_cast(predictor); _predictor = prep->Clone(); if (_predictor.get() == NULL) { LOG(ERROR) << "fail to clone paddle predictor: " << predictor; return -1; } return 0; } virtual void* get() { return _predictor.get(); } protected: // _predictor is a prediction instance of Paddle Inference. // when inferring on the CPU, _predictor is bound to a model. // when inferring on the GPU, _predictor is bound to a model and a GPU card. // Therefore, when using GPU multi-card inference, you need to create multiple // EngineCore. std::shared_ptr _predictor; }; // Paddle Inference Engine class PaddleInferenceEngine : public EngineCore { public: int create(const configure::EngineDesc& engine_conf, int gpu_id) { std::string model_path = engine_conf.model_dir(); if (access(model_path.c_str(), F_OK) == -1) { LOG(ERROR) << "create paddle predictor failed, path not exits: " << model_path; return -1; } Config config; std::vector suffixParaVector = { ".pdiparams", "__params__", "params"}; std::vector suffixModelVector = { ".pdmodel", "__model__", "model"}; std::string paraFileName = getFileBySuffix(model_path, suffixParaVector); std::string modelFileName = getFileBySuffix(model_path, suffixModelVector); std::string encryParaPath = model_path + "/encrypt_model"; std::string encryModelPath = model_path + "/encrypt_params"; std::string encryKeyPath = model_path + "/key"; // encrypt model if (access(encryParaPath.c_str(), F_OK) != -1 && access(encryModelPath.c_str(), F_OK) != -1 && access(encryKeyPath.c_str(), F_OK) != -1) { // decrypt model std::string model_buffer, params_buffer, key_buffer; predictor::ReadBinaryFile(model_path + "/encrypt_model", &model_buffer); predictor::ReadBinaryFile(model_path + "/encrypt_params", ¶ms_buffer); predictor::ReadBinaryFile(model_path + "/key", &key_buffer); auto cipher = paddle::MakeCipher(""); std::string real_model_buffer = cipher->Decrypt(model_buffer, key_buffer); std::string real_params_buffer = cipher->Decrypt(params_buffer, key_buffer); config.SetModelBuffer(&real_model_buffer[0], real_model_buffer.size(), &real_params_buffer[0], real_params_buffer.size()); } else if (paraFileName.length() != 0 && modelFileName.length() != 0) { config.SetParamsFile(model_path + "/" + paraFileName); config.SetProgFile(model_path + "/" + modelFileName); } else { config.SetModel(model_path); } // Enable distributed model inferencing DistConfig distCfg; if (engine_conf.has_enable_dist_model() && engine_conf.enable_dist_model()) { int ep_size = engine_conf.dist_endpoints_size(); int cur_index = engine_conf.dist_subgraph_index(); if (ep_size <= cur_index) { LOG(ERROR) << "create paddle predictor failed, Distributed model error." << " dist_endpoints_size=" << ep_size << " is not bigger than dist_subgraph_index=" << cur_index; return -1; } std::vector vec_eps; for (int i = 0; i < ep_size; ++i) { vec_eps.emplace_back(engine_conf.dist_endpoints(i)); } distCfg.EnableDistModel(true); distCfg.SetCarrierId(engine_conf.dist_carrier_id()); distCfg.SetRanks(engine_conf.dist_nranks(), cur_index); distCfg.SetEndpoints(vec_eps, engine_conf.dist_endpoints(cur_index)); distCfg.SetCommInitConfig(engine_conf.dist_cfg_file()); config.SetDistConfig(distCfg); LOG(INFO) << "Create Distributed predictor! dist_carrier_id=" << engine_conf.dist_carrier_id() << ", Ranks=" << engine_conf.dist_nranks() << ", current index of ranks=" << cur_index << ", current endpoint=" << engine_conf.dist_endpoints(cur_index) << ", communicate init config file=" << engine_conf.dist_cfg_file(); } config.SwitchSpecifyInputNames(true); config.SetCpuMathLibraryNumThreads(1); if (engine_conf.has_use_gpu() && engine_conf.use_gpu()) { // 2000MB GPU memory config.EnableUseGpu(50, gpu_id); if (engine_conf.has_gpu_multi_stream() && engine_conf.gpu_multi_stream()) { config.EnableGpuMultiStream(); } } precision_type = GetPrecision(FLAGS_precision); if (engine_conf.has_enable_ir_optimization() && !engine_conf.enable_ir_optimization()) { config.SwitchIrOptim(false); } else { config.SwitchIrOptim(true); } if (engine_conf.has_use_trt() && engine_conf.use_trt()) { config.SwitchIrOptim(true); if (!engine_conf.has_use_gpu() || !engine_conf.use_gpu()) { config.EnableUseGpu(50, gpu_id); if (engine_conf.has_gpu_multi_stream() && engine_conf.gpu_multi_stream()) { config.EnableGpuMultiStream(); } } config.EnableTensorRtEngine(1 << 25, max_batch, min_subgraph_size, precision_type, false, FLAGS_use_calib); LOG(INFO) << "create TensorRT predictor"; } if (engine_conf.has_use_lite() && engine_conf.use_lite()) { config.EnableLiteEngine(precision_type, true); config.SwitchIrOptim(true); } if ((!engine_conf.has_use_lite() && !engine_conf.has_use_gpu()) || (engine_conf.has_use_lite() && !engine_conf.use_lite() && engine_conf.has_use_gpu() && !engine_conf.use_gpu())) { #ifdef WITH_MKLML #ifdef WITH_MKLDNN config.EnableMKLDNN(); config.SwitchIrOptim(true); config.DisableGpu(); // config.SetCpuMathLibraryNumThreads(2); if (precision_type == PrecisionType::kInt8) { config.EnableMkldnnQuantizer(); auto quantizer_config = config.mkldnn_quantizer_config(); // TODO(somebody): warmup data // quantizer_config -> SetWarmupData(); // quantizer_config -> SetWarmupBatchSize(); // quantizer_config -> SetEnabledOpTypes(4); } else if (precision_type == PrecisionType::kHalf) { config.EnableMkldnnBfloat16(); } #endif #endif } if (engine_conf.has_use_xpu() && engine_conf.use_xpu()) { // 2 MB l3 cache config.EnableXpu(2 * 1024 * 1024); config.SetXpuDeviceId(gpu_id); } if (engine_conf.has_use_ascend_cl() && engine_conf.use_ascend_cl()) { if (engine_conf.has_use_lite() && engine_conf.use_lite()) { // for ascend 310 FLAGS_nnadapter_device_names = "huawei_ascend_npu"; FLAGS_nnadapter_context_properties = "HUAWEI_ASCEND_NPU_SELECTED_DEVICE_IDS=" + std::to_string(gpu_id); FLAGS_nnadapter_model_cache_dir = ""; config.NNAdapter() .Enable() .SetDeviceNames({FLAGS_nnadapter_device_names}) .SetContextProperties(FLAGS_nnadapter_context_properties) .SetModelCacheDir(FLAGS_nnadapter_model_cache_dir); LOG(INFO) << "Enable Lite NNAdapter for Ascend," << "nnadapter_device_names=" << FLAGS_nnadapter_device_names << ",nnadapter_context_properties=" << FLAGS_nnadapter_context_properties << ",nnadapter_model_cache_dir=" << FLAGS_nnadapter_model_cache_dir; } else { // for ascend 910 config.EnableNpu(gpu_id); } } if (engine_conf.has_enable_memory_optimization() && engine_conf.enable_memory_optimization()) { config.EnableMemoryOptim(); } predictor::AutoLock lock(predictor::GlobalCreateMutex::instance()); _predictor = CreatePredictor(config); if (NULL == _predictor.get()) { LOG(ERROR) << "create paddle predictor failed, path: " << model_path; return -1; } VLOG(2) << "create paddle predictor sucess, path: " << model_path; return 0; } }; } // namespace inference } // namespace paddle_serving } // namespace baidu