# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys class CriteoDataset(object): def setup(self, sparse_feature_dim): self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.cont_max_ = [ 20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.cont_diff_ = [ 20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.hash_dim_ = sparse_feature_dim # here, training data are lines with line_index < train_idx_ self.train_idx_ = 41256555 self.continuous_range_ = range(1, 14) self.categorical_range_ = range(14, 40) def _process_line(self, line): features = line.rstrip('\n').split('\t') dense_feature = [] sparse_feature = [] for idx in self.continuous_range_: if features[idx] == '': dense_feature.append(0.0) else: dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \ self.cont_diff_[idx - 1]) for idx in self.categorical_range_: sparse_feature.append( [hash(str(idx) + features[idx]) % self.hash_dim_]) return dense_feature, sparse_feature, [int(features[0])] def infer_reader(self, filelist, batch, buf_size): def local_iter(): for fname in filelist: with open(fname.strip(), "r") as fin: for line in fin: dense_feature, sparse_feature, label = self._process_line( line) #yield dense_feature, sparse_feature, label yield [dense_feature] + sparse_feature + [label] import paddle batch_iter = paddle.batch( paddle.reader.shuffle( local_iter, buf_size=buf_size), batch_size=batch) return batch_iter def generate_sample(self, line): def data_iter(): dense_feature, sparse_feature, label = self._process_line(line) feature_name = ["dense_input"] for idx in self.categorical_range_: feature_name.append("C" + str(idx - 13)) feature_name.append("label") yield zip(feature_name, [dense_feature] + sparse_feature + [label]) return data_iter if __name__ == "__main__": criteo_dataset = CriteoDataset() criteo_dataset.setup(int(sys.argv[1])) criteo_dataset.run_from_stdin()