# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from paddle_serving_client import Client import numpy as np from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage if len(sys.argv) != 4: print("python resnet50_web_service.py model device port") sys.exit(-1) device = sys.argv[2] if device == "cpu": from paddle_serving_server.web_service import WebService else: from paddle_serving_server_gpu.web_service import WebService class ImageService(WebService): def init_imagenet_setting(self): self.seq = Sequential([ URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose( (2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) ]) self.label_dict = {} label_idx = 0 with open("imagenet.label") as fin: for line in fin: self.label_dict[label_idx] = line.strip() label_idx += 1 def preprocess(self, feed=[], fetch=[]): feed_batch = [] is_batch = True for ins in feed: if "image" not in ins: raise ("feed data error!") img = self.seq(ins["image"]) feed_batch.append({"image": img[np.newaxis, :]}) return feed_batch, fetch, is_batch def postprocess(self, feed=[], fetch=[], fetch_map={}): score_list = fetch_map["score"] result = {"label": [], "prob": []} for score in score_list: score = score.tolist() max_score = max(score) result["label"].append(self.label_dict[score.index(max_score)] .strip().replace(",", "")) result["prob"].append(max_score) return result image_service = ImageService(name="image") image_service.load_model_config(sys.argv[1]) image_service.init_imagenet_setting() if device == "gpu": image_service.set_gpus("0") image_service.prepare_server( workdir="workdir", port=int(sys.argv[3]), device=device) image_service.run_rpc_service() image_service.run_web_service()