# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from time import time as _time import time import threading import multiprocessing from paddle_serving_client import Client from concurrent import futures import logging import func_timeout import os import sys import collections import numpy as np import json from numpy import * from io import BytesIO if sys.version_info.major == 2: import Queue elif sys.version_info.major == 3: import queue as Queue else: raise Exception("Error Python version") from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify check_feed_dict=ParamVerify.check_feed_dict check_fetch_list=ParamVerify.check_fetch_list from .proto import pipeline_service_pb2 from .channel import (ThreadChannel, ProcessChannel,ChannelData, ChannelDataType, ChannelStopError, ChannelTimeoutError) from .error_catch import ProductErrCode from .error_catch import CustomExceptionCode as ChannelDataErrcode from .util import NameGenerator from .profiler import UnsafeTimeProfiler as TimeProfiler from . import local_service_handler from .pipeline_client import PipelineClient as PPClient _LOGGER = logging.getLogger(__name__) _op_name_gen = NameGenerator("Op") # data type of tensor to numpy_data _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = { 0: "int64", # VarType.INT64 1: "float32", # VarType.FP32 2: "int32", # VarType.INT32 3: "float64", # VarType.FP64 4: "int16", # VarType.int16 5: "float16", # VarType.FP32 6: "uint16", # VarType.BF16 7: "uint8", # VarType.UINT8 8: "int8", # VarType.INT8 9: "bool", # VarType.BOOL 10: "complex64", # VarType.COMPLEX64 11: "complex128", # VarType.COMPLEX128 12: "string", # load by numpy 13: "bytes", # load by numpy } class Op(object): def __init__(self, name=None, input_ops=[], server_endpoints=None, fetch_list=None, client_config=None, client_type=None, concurrency=None, timeout=None, retry=0, batch_size=None, auto_batching_timeout=None, local_service_handler=None, jump_to_ops=[]): # In __init__, all the parameters are just saved and Op is not initialized if name is None: name = _op_name_gen.next() self.name = name # to identify the type of OP, it must be globally unique self.concurrency = concurrency # amount of concurrency self.set_input_ops(input_ops) self.set_jump_to_ops(jump_to_ops) self._local_service_handler = local_service_handler self._server_endpoints = server_endpoints self._fetch_names = fetch_list self._client_config = client_config self.client_type = client_type self._timeout = timeout self._retry = max(1, retry) self._batch_size = batch_size self._auto_batching_timeout = auto_batching_timeout self._input = None self._outputs = [] self._server_use_profile = False self._tracer = None # for grpc_pipeline predict mode. False, string key/val; True, tensor format. self._pack_tensor_format = False # only for thread op self._for_init_op_lock = threading.Lock() self._for_close_op_lock = threading.Lock() self._succ_init_op = False self._succ_close_op = False self.dynamic_shape_info = {} self.set_dynamic_shape_info() def set_dynamic_shape_info(self): pass # for feed/fetch dict cehck @staticmethod def get_feed_fetch_list(client): from paddle_serving_app.local_predict import LocalPredictor if isinstance(client, Client): feed_names = client.get_feed_names() fetch_names = client.get_fetch_names() if isinstance(client, LocalPredictor): feed_names = client.feed_names_ fetch_names = client.fetch_names_ return feed_names, fetch_names def init_from_dict(self, conf): """ Initializing one Op from config.yaml. If server_endpoints exist, which is remote RPC mode, otherwise it is local RPC mode. There are three types of predictios in local RPC mode, brpc, grpc and local_predictor. Args: conf: config.yaml Returns: """ if self.concurrency is None: self.concurrency = conf["concurrency"] if self._retry is None: self._retry = conf["retry"] if self._fetch_names is None: self._fetch_names = conf.get("fetch_list") if self._client_config is None: self._client_config = conf.get("client_config") if self._timeout is None: self._timeout = conf["timeout"] if self._timeout > 0: self._timeout = self._timeout / 1000.0 else: self._timeout = -1 if self._batch_size is None: self._batch_size = conf["batch_size"] if self._auto_batching_timeout is None: self._auto_batching_timeout = conf["auto_batching_timeout"] if self._auto_batching_timeout <= 0 or self._batch_size == 1: _LOGGER.debug( self._log( "Because auto_batching_timeout <= 0 or batch_size == 1," " set auto_batching_timeout to None.")) self._auto_batching_timeout = None else: self._auto_batching_timeout = self._auto_batching_timeout / 1000.0 self.model_config = None self.workdir = None self.thread_num = self.concurrency self.device_type = -1 self.devices = "" self.mem_optim = False self.ir_optim = False self.precision = "fp32" self.use_mkldnn = False self.mkldnn_cache_capacity = 0 self.mkldnn_op_list = None self.mkldnn_bf16_op_list = None self.min_subgraph_size = 3 if self._server_endpoints is None: server_endpoints = conf.get("server_endpoints", []) if len(server_endpoints) != 0: # remote service self.with_serving = True self._server_endpoints = server_endpoints self.client_type = conf["client_type"] else: if self._local_service_handler is None: local_service_conf = conf.get("local_service_conf") _LOGGER.info("local_service_conf: {}".format( local_service_conf)) self.model_config = local_service_conf.get("model_config") self.client_type = local_service_conf.get("client_type") self.workdir = local_service_conf.get("workdir") self.thread_num = local_service_conf.get("thread_num") self.device_type = local_service_conf.get("device_type") self.devices = local_service_conf.get("devices") self.mem_optim = local_service_conf.get("mem_optim") self.ir_optim = local_service_conf.get("ir_optim") self._fetch_names = local_service_conf.get("fetch_list") self.precision = local_service_conf.get("precision") self.use_mkldnn = local_service_conf.get("use_mkldnn") self.mkldnn_cache_capacity = local_service_conf.get( "mkldnn_cache_capacity") self.mkldnn_op_list = local_service_conf.get( "mkldnn_op_list") self.mkldnn_bf16_op_list = local_service_conf.get( "mkldnn_bf16_op_list") self.min_subgraph_size = local_service_conf.get( "min_subgraph_size") if self.model_config is None: self.with_serving = False else: # local rpc service self.with_serving = True if self.client_type == "brpc" or self.client_type == "grpc": service_handler = local_service_handler.LocalServiceHandler( model_config=self.model_config, client_type=self.client_type, workdir=self.workdir, thread_num=self.thread_num, device_type=self.device_type, devices=self.devices, mem_optim=self.mem_optim, ir_optim=self.ir_optim, precision=self.precision, use_mkldnn=self.use_mkldnn, mkldnn_cache_capacity=self. mkldnn_cache_capacity, mkldnn_op_list=self.mkldnn_bf16_op_list, mkldnn_bf16_op_list=self.mkldnn_bf16_op_list, min_subgraph_size=self.min_subgraph_size, dynamic_shape_info=self.dynamic_shape_info) service_handler.prepare_server() # get fetch_list serivce_ports = service_handler.get_port_list() self._server_endpoints = [ "127.0.0.1:{}".format(p) for p in serivce_ports ] if self._client_config is None: self._client_config = service_handler.get_client_config( ) if self._fetch_names is None: self._fetch_names = service_handler.get_fetch_list( ) elif self.client_type == "local_predictor": service_handler = local_service_handler.LocalServiceHandler( model_config=self.model_config, client_type=self.client_type, workdir=self.workdir, thread_num=self.thread_num, device_type=self.device_type, devices=self.devices, fetch_names=self._fetch_names, mem_optim=self.mem_optim, ir_optim=self.ir_optim, precision=self.precision, use_mkldnn=self.use_mkldnn, mkldnn_cache_capacity=self. mkldnn_cache_capacity, mkldnn_op_list=self.mkldnn_op_list, mkldnn_bf16_op_list=self.mkldnn_bf16_op_list, min_subgraph_size=self.min_subgraph_size, dynamic_shape_info=self.dynamic_shape_info) if self._client_config is None: self._client_config = service_handler.get_client_config( ) self._local_service_handler = service_handler else: self.with_serving = True self._local_service_handler.prepare_server( ) # get fetch_list serivce_ports = self._local_service_handler.get_port_list() self._server_endpoints = [ "127.0.0.1:{}".format(p) for p in serivce_ports ] if self._client_config is None: self._client_config = self._local_service_handler.get_client_config( ) if self._fetch_names is None: self._fetch_names = self._local_service_handler.get_fetch_list( ) else: self.with_serving = True if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp): _LOGGER.info( self._log("\n\tinput_ops: {}," "\n\tserver_endpoints: {}" "\n\tfetch_list: {}" "\n\tclient_config: {}" "\n\tconcurrency: {}," "\n\ttimeout(s): {}," "\n\tretry: {}," "\n\tbatch_size: {}," "\n\tauto_batching_timeout(s): {}".format( ", ".join([op.name for op in self._input_ops ]), self._server_endpoints, self._fetch_names, self._client_config, self.concurrency, self._timeout, self._retry, self._batch_size, self._auto_batching_timeout))) def launch_local_rpc_service(self): """ Launching multiple local rpc servers. Args: None Returns: None """ if self._local_service_handler is None: _LOGGER.warning( self._log("Failed to launch local rpc" " service: local_service_handler is None.")) return port = self._local_service_handler.get_port_list() #if self._local_service_handler.client_type == "local_predictor": # _LOGGER.info("Op({}) use local predictor.") # return self._local_service_handler.start_server() _LOGGER.info("Op({}) use local rpc service at port: {}" .format(self.name, port)) def use_default_auto_batching_config(self): """ Set the auto batching config default. Args: None Returns: None """ if self._batch_size != 1: _LOGGER.warning("Op({}) reset batch_size=1 (original: {})" .format(self.name, self._batch_size)) self._batch_size = 1 if self._auto_batching_timeout != None: _LOGGER.warning( "Op({}) reset auto_batching_timeout=None (original: {})" .format(self.name, self._auto_batching_timeout)) self._auto_batching_timeout = None def use_profiler(self, use_profile): self._server_use_profile = use_profile def set_tracer(self, tracer): self._tracer = tracer def init_client(self, client_config, server_endpoints): """ Initialize the client object. There are three types of clients, brpc, grpc and local_predictor. In grpc or brpc mode, the client connects endpoints. Args: client_config: client config info server_endpoints: server IP/Port list. Returns: client: client object. """ if self.with_serving == False: _LOGGER.info("Op({}) has no client (and it also do not " "run the process function)".format(self.name)) return None if self.client_type == 'brpc': client = Client() client.load_client_config(client_config) self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) elif self.client_type == 'pipeline_grpc': client = PPClient() elif self.client_type == 'local_predictor': if self.local_predictor is None: raise ValueError("local predictor not yet created") client = self.local_predictor self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) else: raise ValueError("Failed to init client: unknow client " "type {}".format(self.client_type)) if self._fetch_names is None: self._fetch_names = client.fetch_names_ _LOGGER.info("Op({}) has no fetch name set. So fetch all vars") if self.client_type != "local_predictor": client.connect(server_endpoints) _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names)) return client def get_input_ops(self): return self._input_ops def set_input_ops(self, ops): """ Set input ops.Each op have many input ops, but only one input channel. Args: ops: op list Returns: None. """ if not isinstance(ops, list): ops = [] if ops is None else [ops] self._input_ops = [] for op in ops: if not isinstance(op, Op): _LOGGER.critical( self._log("Failed to set input_ops: input op " "must be Op type, not {}".format(type(op)))) os._exit(-1) self._input_ops.append(op) def set_pack_tensor_format(self, is_tensor_format=False): self._pack_tensor_format = is_tensor_format def get_jump_to_ops(self): return self._jump_to_ops def set_jump_to_ops(self, ops): """ Set jump to ops, then, this op can send channeldata to output channel. Args: ops: op list to be jumpped Returns: None. """ if not isinstance(ops, list): ops = [] if ops is None else [ops] self._jump_to_ops = [] for op in ops: if not isinstance(op, Op): _LOGGER.critical( self._log("Failed to set input_ops: input op " "must be Op type, not {}".format(type(op)))) os._exit(-1) self._jump_to_ops.append(op) def is_jump_op(self): """ The op has _jump_to_ops members or not. Args: None Returns: True or False """ return len(self._jump_to_ops) > 0 def check_jumping(self, input_data): """ Check whether to send data to jump ops.WhileOp needs to rewrite this interface. this function returns False default. Args: input_data: input data to be preprocessed Returns: True, send data to the output channel of jump ops False, send data to output channel. """ return False def get_output_channels_of_jump_ops(self): """ Get output channels of jump ops Args: None Returns: list of channels """ channels = [] if self.is_jump_op() is False: return channels for op in self._jump_to_ops: _LOGGER.info("op:{} extend op._get_output_channels:{}".format( op.name, op._get_output_channels())) channels.extend(op._get_output_channels()) _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format( channels)) return channels def add_input_channel(self, channel): """ Adding one input channel to the Op. Each op have many front op, but, only one input channel. """ if not isinstance(channel, (ThreadChannel, ProcessChannel)): _LOGGER.critical( self._log("Failed to set input_channel: input " "channel must be Channel type, not {}".format( type(channel)))) os._exit(-1) channel.add_consumer(self.name) self._input = channel def clean_input_channel(self): self._input = None def _get_input_channel(self): return self._input def add_output_channel(self, channel): """ Adding one output channel to the Op. Each op have many output channels, But only one front channel. Args: channel: an output channel object. Returns: None """ if not isinstance(channel, (ThreadChannel, ProcessChannel)): _LOGGER.critical( self._log("Failed to add output_channel: output channel " "must be Channel type, not {}".format(type(channel)))) os._exit(-1) channel.add_producer(self.name) self._outputs.append(channel) _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel)) def clean_output_channels(self): self._outputs = [] def _get_output_channels(self): return self._outputs def preprocess(self, input_dicts, data_id=0, log_id=0): """ In preprocess stage, assembling data for process stage. users can override this function for model feed features. Args: input_dicts: input data to be preprocessed data_id: inner unique id, increase auto log_id: global unique id for RTT, 0 default Return: output_data: data for process stage is_skip_process: skip process stage or not, False default prod_errcode: None default, otherwise, product errores occured. It is handled in the same way as exception. prod_errinfo: "" default """ # multiple previous Op if len(input_dicts) != 1: _LOGGER.critical( self._log( "Failed to run preprocess: this Op has multiple previous " "inputs. Please override this func.")) os._exit(-1) (_, input_dict), = input_dicts.items() return input_dict, False, None, "" def process(self, feed_batch, typical_logid=0): """ In process stage, send requests to the inference server or predict locally. users do not need to inherit this function Args: feed_batch: data to be fed to inference server typical_logid: mark batch predicts, usually the first logid in batch, 0 default. Returns: call_result: predict result """ call_result = None err_code = ChannelDataErrcode.OK.value err_info = "" @ErrorCatch @ParamChecker def feed_fetch_list_check_helper(feed_batch : lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names), fetch_list : lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names), log_id): return None _, resp = feed_fetch_list_check_helper(feed_batch, self._fetch_names, log_id=typical_logid) if resp.err_no != CustomExceptionCode.OK.value: err_code = resp.err_no err_info = resp.err_msg call_result = None return call_result, err_code, err_info if self.client_type == "local_predictor": err, err_info = ChannelData.check_batch_npdata(feed_batch) if err != 0: _LOGGER.error( self._log("Failed to run process: {}. feed_batch must be \ npdata in process for local_predictor mode." .format(err_info))) return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata" call_result = self.client.predict( feed=feed_batch[0], fetch=self._fetch_names, batch=True, log_id=typical_logid) elif self.client_type == "brpc": err, err_info = ChannelData.check_batch_npdata(feed_batch) if err != 0: _LOGGER.error( self._log("Failed to run process: {}. feed_batch must be \ npdata in process for brpc mode.".format(err_info))) return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata" call_result = self.client.predict( feed=feed_batch[0], fetch=self._fetch_names, batch=True, log_id=typical_logid) elif self.client_type == "pipeline_grpc": err, err_info = ChannelData.check_dictdata(feed_batch) if err != 0: _LOGGER.error( self._log("Failed to run process: {}. feed_batch must be \ npdata in process for pipeline_grpc mode." .format(err_info))) return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict" call_result = self.client.predict( feed_dict=feed_batch[0], fetch=self._fetch_names, asyn=False, pack_tensor_format=self._pack_tensor_format, profile=False) if call_result is None: _LOGGER.error( self._log("Failed in pipeline_grpc. call_result is None.")) return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error" if call_result.err_no != 0: _LOGGER.error( self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}". format(call_result.err_no, call_result.err_msg))) return call_result, ChannelDataErrcode( call_result.err_no).value, call_result.err_msg new_dict = {} err_code = ChannelDataErrcode(call_result.err_no).value err_info = call_result.err_msg for idx, key in enumerate(call_result.key): new_dict[key] = [call_result.value[idx]] call_result = new_dict return call_result, err_code, err_info def postprocess(self, input_data, fetch_data, data_id=0, log_id=0): """ In postprocess stage, assemble data for next op or output. Args: input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict) fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict) data_id: inner unique id, increase auto log_id: logid, 0 default Returns: fetch_dict: fetch result must be dict type. prod_errcode: None default, otherwise, product errores occured. It is handled in the same way as exception. prod_errinfo: "" default """ fetch_dict = {} if isinstance(fetch_data, dict): fetch_dict = fetch_data return fetch_dict, None, "" def _parse_channeldata(self, channeldata_dict): """ Parse one channeldata Args: channeldata_dict : channel data to be parsed, dict type Return: data_id: created by dag._id_generator, unique error_channeldata: error channeldata parsed_data: get np/dict data from channeldata client_need_profile: need profile info profile_set: profile info log_id: logid for tracing a request """ data_id, error_channeldata = None, None client_need_profile, profile_set = False, set() parsed_data = {} key = list(channeldata_dict.keys())[0] data_id = channeldata_dict[key].id log_id = channeldata_dict[key].log_id client_need_profile = channeldata_dict[key].client_need_profile for name, data in channeldata_dict.items(): if data.error_code != ChannelDataErrcode.OK.value: error_channeldata = data break parsed_data[name] = data.parse() if client_need_profile: profile_set |= data.profile_data_set return (data_id, error_channeldata, parsed_data, client_need_profile, profile_set, log_id) def _push_to_output_channels(self, data, channels, name=None, profile_str=None, client_need_profile=False, profile_set=None): """ Push data to output channels, Do not run the later stage(preprocess, process, postprocess) Args: data: channeldata, to be pushed channels: output channels name: op name profile_str: one profile message client_need_profile: False default profile_set: profile message collections Returns: None """ if name is None: name = self.name # add profile into channeldata if client_need_profile and profile_set is not None: if profile_str is not None: profile_set.add(profile_str) data.add_profile(profile_set) for channel in channels: channel.push(data, name) def start_with_process(self): """ Each OP creates a process to run the main loop, initializes the CUDA environment in each individual process. Args: None Returns: process array """ trace_buffer = None if self._tracer is not None: trace_buffer = self._tracer.data_buffer() process = [] for concurrency_idx in range(self.concurrency): p = multiprocessing.Process( target=self._run, args=(concurrency_idx, self._get_input_channel(), self._get_output_channels(), False, trace_buffer, self.model_config, self.workdir, self.thread_num, self.device_type, self.devices, self.mem_optim, self.ir_optim, self.precision, self.use_mkldnn, self.mkldnn_cache_capacity, self.mkldnn_op_list, self.mkldnn_bf16_op_list, self.is_jump_op(), self.get_output_channels_of_jump_ops(), self.min_subgraph_size, self.dynamic_shape_info)) p.daemon = True p.start() process.append(p) return process def start_with_thread(self): """ Each OP creates a thread to run the main loop, initializes the CUDA environment in the main thread. Args: None Returns: thread array """ trace_buffer = None if self._tracer is not None: trace_buffer = self._tracer.data_buffer() #Init cuda env in main thread if self.client_type == "local_predictor": _LOGGER.info("Init cuda env in main thread") self.local_predictor = self._local_service_handler.get_client(0) threads = [] for concurrency_idx in range(self.concurrency): t = threading.Thread( target=self._run, args=(concurrency_idx, self._get_input_channel(), self._get_output_channels(), True, trace_buffer, self.model_config, self.workdir, self.thread_num, self.device_type, self.devices, self.mem_optim, self.ir_optim, self.precision, self.use_mkldnn, self.mkldnn_cache_capacity, self.mkldnn_op_list, self.mkldnn_bf16_op_list, self.is_jump_op(), self.get_output_channels_of_jump_ops(), self.min_subgraph_size, self.dynamic_shape_info)) # When a process exits, it attempts to terminate # all of its daemonic child processes. t.daemon = True t.start() threads.append(t) return threads def init_op(self): pass def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict): """ Run preprocess stage Args: parsed_data_dict: data to be pre-processed op_info_prefix: input op info logid_dict: logid dict Returns: preped_data_dict: data preprocessed, to be processed err_channeldata_dict: when exceptions occurred, putting errors in it. skip_process_dict: skip process stage or not """ _LOGGER.debug("{} Running preprocess".format(op_info_prefix)) preped_data_dict = collections.OrderedDict() err_channeldata_dict = collections.OrderedDict() skip_process_dict = {} @ErrorCatch def preprocess_help(self, parsed_data, data_id, logid_dict): preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess( parsed_data, data_id, logid_dict.get(data_id)) return preped_data, is_skip_process, prod_errcode, prod_errinfo for data_id, parsed_data in parsed_data_dict.items(): preped_data, error_channeldata = None, None is_skip_process = False prod_errcode, prod_errinfo = None, None log_id = logid_dict.get(data_id) process_res, resp = preprocess_help(self, parsed_data, data_id = data_id, logid_dict = logid_dict) if resp.err_no == CustomExceptionCode.OK.value: preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res if is_skip_process is True: skip_process_dict[data_id] = True if prod_errcode is not None: _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo)) error_channeldata = ChannelData( error_code=ChannelDataErrcode.PRODUCT_ERROR.value, error_info="", prod_error_code=prod_errcode, prod_error_info=prod_errinfo, data_id=data_id, log_id=log_id) else: error_channeldata = ChannelData( error_code=resp.err_no, error_info=resp.err_msg, data_id=data_id, log_id=log_id) skip_process_dict[data_id] = True if error_channeldata is not None: err_channeldata_dict[data_id] = error_channeldata else: preped_data_dict[data_id] = preped_data _LOGGER.debug("{} Succ preprocess".format(op_info_prefix)) return preped_data_dict, err_channeldata_dict, skip_process_dict def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict, logid_dict): """ Run process stage Args: preped_data_dict: feed the data to be predicted by the model. op_info_prefix: prefix op info skip_process_dict: skip process stage or not logid_dict: logid dict Returns: midped_data_dict: data midprocessed, to be post-processed err_channeldata_dict: when exceptions occurred, putting errors in it """ _LOGGER.debug("{} Running process".format(op_info_prefix)) midped_data_dict = collections.OrderedDict() err_channeldata_dict = collections.OrderedDict() is_skip_process = False data_ids = list(preped_data_dict.keys()) # skip process stage if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True: is_skip_process = True if self.with_serving is False or is_skip_process is True: midped_data_dict = preped_data_dict _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \ "with_serving={}, is_skip_process={}".format(data_ids[0], logid_dict.get(data_ids[0]), self.name, self.with_serving, is_skip_process)) return midped_data_dict, err_channeldata_dict # use typical_logid to mark batch data # data_ids is one self-increasing unique key. typical_logid = data_ids[0] if len(data_ids) != 1: for data_id in data_ids: _LOGGER.info( "(data_id={} logid={}) Auto-batching is On Op={}!!" \ "We selected logid={} (from batch: {}) as a " \ "representative for logging.".format( data_id, logid_dict.get(data_id), self.name, typical_logid, data_ids)) one_input = preped_data_dict[data_ids[0]] feed_batch = [] feed_dict = {} cur_offset = 0 input_offset_dict = {} batch_input = False if isinstance(one_input, dict): # For dict type, data structure is dict. # Merge multiple dicts for data_ids into one dict. # feed_batch is the input param of predict func. # input_offset_dict is used for data restration[data_ids] if len(data_ids) == 1: feed_batch = [preped_data_dict[data_id] for data_id in data_ids] else: for data_id in data_ids: for key, val in preped_data_dict[data_id].items(): has_val = feed_dict.get(key) if has_val is None: feed_dict[key] = val continue # merge 2 np.arrray if isinstance(val, np.ndarray): feed_dict[key] = np.append( feed_dict[key], val, axis=0) feed_batch.append(feed_dict) for data_id in data_ids: start = cur_offset for key, val in preped_data_dict[data_id].items(): if isinstance(val, (list, np.ndarray)): cur_offset += len(val) else: cur_offset += 1 break input_offset_dict[data_id] = [start, cur_offset] elif isinstance(one_input, list): # For list type, data structure of one_input is [dict, dict, ...] # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...] # Data structure of input_offset_dict is { data_id : [start, end] } batch_input = True for data_id in data_ids: feed_batch.extend(preped_data_dict[data_id]) data_size = len(preped_data_dict[data_id]) start = cur_offset cur_offset = start + data_size input_offset_dict[data_id] = [start, cur_offset] else: _LOGGER.critical( "(data_id={} log_id={}){} Failed to process: expect input type is dict" " or list(batch input), but get {}".format(data_ids[ 0], typical_logid, op_info_prefix, type(one_input))) for data_id in data_ids: error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = "expect input type is dict or list, but get {}".format( type(one_input)) err_channeldata_dict[data_id] = ChannelData( error_code=error_code, error_info=error_info, data_id=data_id, log_id=logid_dict.get(data_id)) return midped_data_dict, err_channeldata_dict midped_batch = None error_code = ChannelDataErrcode.OK.value error_info = "" if self._timeout <= 0: # No retry try: if batch_input is False: midped_batch, error_code, error_info = self.process( feed_batch, typical_logid) else: midped_batch = [] for idx in range(len(feed_batch)): predict_res, error_code, error_info = self.process( [feed_batch[idx]], typical_logid) if error_code != ChannelDataErrcode.OK.value: break midped_batch.append(predict_res) except Exception as e: error_code = ChannelDataErrcode.UNKNOW.value error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format( data_ids[0], typical_logid, op_info_prefix, data_ids, e) _LOGGER.error(error_info, exc_info=True) else: # retry N times configed in yaml files. for i in range(self._retry): try: # time out for each process if batch_input is False: midped_batch, error_code, error_info = func_timeout.func_timeout( self._timeout, self.process, args=(feed_batch, typical_logid)) else: midped_batch = [] for idx in range(len(feed_batch)): predict_res, error_code, error_info = func_timeout.func_timeout( self._timeout, self.process, args=([feed_batch[idx]], typical_logid)) midped_batch[idx].append(predict_res) except func_timeout.FunctionTimedOut as e: if i + 1 >= self._retry: error_code = ChannelDataErrcode.TIMEOUT.value error_info = "(log_id={}) {} Failed to process(batch: {}): " \ "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids) _LOGGER.error(error_info) else: _LOGGER.warning( "(log_id={}) {} Failed to process(batch: {}): timeout," " and retrying({}/{})...".format( typical_logid, op_info_prefix, data_ids, i + 1, self._retry)) except Exception as e: error_code = ChannelDataErrcode.UNKNOW.value error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format( typical_logid, op_info_prefix, data_ids, e) _LOGGER.error(error_info, exc_info=True) break else: break # 2 kinds of errors if error_code != ChannelDataErrcode.OK.value or midped_batch is None: error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format( self.name, error_info) _LOGGER.error(error_info) for data_id in data_ids: err_channeldata_dict[data_id] = ChannelData( error_code=error_code, error_info=error_info, data_id=data_id, log_id=logid_dict.get(data_id)) return midped_data_dict, err_channeldata_dict # Split batch infer result to each data_ids if batch_input is False: var_names = midped_batch.keys() lod_var_names = set() lod_offset_names = set() # midped_batch is dict type for single input for name in var_names: lod_offset_name = "{}.lod".format(name) if lod_offset_name in var_names: _LOGGER.debug("(log_id={}) {} {} is LodTensor".format( typical_logid, op_info_prefix, name)) lod_var_names.add(name) lod_offset_names.add(lod_offset_name) for idx, data_id in enumerate(data_ids): midped_data_dict[data_id] = {} for name, value in midped_batch.items(): if name in lod_offset_names: continue if name in lod_var_names: # lodtensor lod_offset_name = "{}.lod".format(name) lod_offset = midped_batch[lod_offset_name] for idx, data_id in enumerate(data_ids): data_offset_left = input_offset_dict[data_id][0] data_offset_right = input_offset_dict[data_id][1] lod_offset_left = lod_offset[data_offset_left] lod_offset_right = lod_offset[data_offset_right] midped_data_dict[data_id][name] = value[ lod_offset_left:lod_offset_right] midped_data_dict[data_id][lod_offset_name] = \ lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left] else: # normal tensor for idx, data_id in enumerate(data_ids): start = input_offset_dict[data_id][0] end = input_offset_dict[data_id][1] midped_data_dict[data_id][name] = value[start:end] else: # midped_batch is list type for batch input for idx, data_id in enumerate(data_ids): start = input_offset_dict[data_id][0] end = input_offset_dict[data_id][1] midped_data_dict[data_id] = midped_batch[start:end] return midped_data_dict, err_channeldata_dict def _run_postprocess(self, parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict): """ Run postprocess stage. Args: parsed_data_dict: data returned in preprocess stage midped_data_dict: data returned in process stage op_info_prefix: prefix op info logid_dict: logid dict Returns: postped_data_dict: data postprocessed err_channeldata_dict: when exceptions occurred, putting errors in it """ _LOGGER.debug("{} Running postprocess".format(op_info_prefix)) postped_data_dict = collections.OrderedDict() err_channeldata_dict = collections.OrderedDict() @ErrorCatch def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict): postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], midped_data, data_id, logid_dict.get(data_id)) if not isinstance(postped_data, dict): raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True) return postped_data, prod_errcode, prod_errinfo for data_id, midped_data in midped_data_dict.items(): log_id = logid_dict.get(data_id) postped_data, err_channeldata = None, None prod_errcode, prod_errinfo = None, None post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id = data_id, logid_dict = logid_dict) if resp.err_no == CustomExceptionCode.OK.value: postped_data, prod_errcode, prod_errinfo = post_res if prod_errcode is not None: # product errors occured err_channeldata = ChannelData( error_code=ChannelDataErrcode.PRODUCT_ERROR.value, error_info="", prod_error_code=prod_errcode, prod_error_info=prod_errinfo, data_id=data_id, log_id=log_id) else: err_channeldata = ChannelData( error_code=resp.err_no, error_info=resp.err_msg, data_id=data_id, log_id=log_id) if err_channeldata is not None: err_channeldata_dict[data_id] = err_channeldata continue output_data = None err, _ = ChannelData.check_npdata(postped_data) if err == 0: output_data = ChannelData( ChannelDataType.CHANNEL_NPDATA.value, npdata=postped_data, data_id=data_id, log_id=log_id) else: output_data = ChannelData( ChannelDataType.DICT.value, dictdata=postped_data, data_id=data_id, log_id=log_id) postped_data_dict[data_id] = output_data _LOGGER.debug("{} Succ postprocess".format(op_info_prefix)) return postped_data_dict, err_channeldata_dict def _auto_batching_generator(self, input_channel, op_name, batch_size, timeout, op_info_prefix): """ Merge batch_size requests for one prediction.Taking one piece of data from the input channel each time until equals batch_size, or the waiting time exceeds auto_batching_timeout. Args: input_channel: the input channel of Op op_name: op name batch_size: batch size, Less than worker_num timeout: batch timeout, seconds, If timeout is None, and the quantity taken from the front is less than batch_size, blocking occured. op_info_prefix: op link info. Returns: None """ while True: batch = [] while len(batch) == 0: endtime = None if timeout is not None: endtime = _time() + timeout for idx in range(batch_size): try: channeldata_dict = None front_start_time = int(round(_time() * 1000000)) if timeout is not None: remaining = endtime - _time() if remaining <= 0.0: _LOGGER.debug("{} Failed to generate batch: " "timeout".format(op_info_prefix)) break channeldata_dict = input_channel.front(op_name, timeout) else: channeldata_dict = input_channel.front(op_name) batch.append(channeldata_dict) _LOGGER.debug( "_auto_batching_generator get {} channeldata from op:{} input channel. time={}". format(idx, op_name, front_start_time)) except ChannelTimeoutError: _LOGGER.debug("{} Failed to generate batch: " "timeout".format(op_info_prefix)) break _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix, len(batch))) yield batch def _parse_channeldata_batch(self, batch, output_channels): """ Parse channeldatas batch Args: batch: auto-batching batch datas output_channels: output channels Returns: parsed_data_dict: parsed from channeldata in batch need_profile_dict: need profile dict in batch profile_dict: profile info dict in batch logid_dict: trace each request in batch """ parsed_data_dict = collections.OrderedDict() need_profile_dict = {} profile_dict = {} logid_dict = {} for channeldata_dict in batch: (data_id, error_channeldata, parsed_data, client_need_profile, profile_set, log_id) = \ self._parse_channeldata(channeldata_dict) if error_channeldata is None: parsed_data_dict[data_id] = parsed_data need_profile_dict[data_id] = client_need_profile profile_dict[data_id] = profile_set logid_dict[data_id] = log_id else: # error data in predecessor Op # (error_channeldata with profile info) self._push_to_output_channels(error_channeldata, output_channels) return parsed_data_dict, need_profile_dict, profile_dict, logid_dict def _run(self, concurrency_idx, input_channel, output_channels, is_thread_op, trace_buffer, model_config, workdir, thread_num, device_type, devices, mem_optim, ir_optim, precision, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list, mkldnn_bf16_op_list, is_jump_op, output_channels_of_jump_ops, min_subgraph_size, dynamic_shape_info): """ _run() is the entry function of OP process / thread model.When client type is local_predictor in process mode, the CUDA environment needs to be initialized by LocalServiceHandler[child process], otherwise, Cuda error(3), initialization error is occured. Preprocess, process and postprocess are executed in the main loop. The preprocess and postprocess function is usually rewrited by users. Trace data is recorded by trace_que. Args: concurrency_idx: thread/process index input_channel: input channel, take the data to be processed output_channels: output channel, store processed data is_thread_op: False, It's process op; True, It's thread op trace_buffer: store trace infomations model_config: model config path workdir: work directory thread_num: number of threads, concurrent quantity device_type: support multiple devices devices: gpu id list[gpu], "" default[cpu] mem_optim: use memory/graphics memory optimization, True default. ir_optim: use calculation chart optimization, False default. precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16" use_mkldnn: use mkldnn, default False. mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit. mkldnn_op_list: OP list optimized by mkldnn, None default. mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default. is_jump_op: OP has jump op list or not, False default. output_channels_of_jump_ops: all output channels of jump ops. Returns: None """ op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx) # init ops profiler = None try: if is_thread_op == False and self.client_type == "local_predictor": self.service_handler = local_service_handler.LocalServiceHandler( model_config=model_config, client_type="local_predictor", workdir=workdir, thread_num=thread_num, device_type=device_type, devices=devices, mem_optim=mem_optim, ir_optim=ir_optim, precision=precision, use_mkldnn=use_mkldnn, mkldnn_cache_capacity=mkldnn_cache_capacity, mkldnn_op_list=mkldnn_op_list, mkldnn_bf16_op_list=mkldnn_bf16_op_list, min_subgraph_size=min_subgraph_size, dynamic_shape_info=dynamic_shape_info) _LOGGER.info("Init cuda env in process {}".format( concurrency_idx)) self.local_predictor = self.service_handler.get_client( concurrency_idx) # check all ops initialized successfully. profiler = self._initialize(is_thread_op, concurrency_idx) except Exception as e: _LOGGER.critical( "{} failed to init op: {}".format(op_info_prefix, e), exc_info=True) os._exit(-1) _LOGGER.info("{} Succ init".format(op_info_prefix)) batch_generator = self._auto_batching_generator( input_channel=input_channel, op_name=self.name, batch_size=self._batch_size, timeout=self._auto_batching_timeout, op_info_prefix=op_info_prefix) start, end = None, None trace_que = collections.deque() while True: start = int(round(_time() * 1000000)) try: channeldata_dict_batch = next(batch_generator) except ChannelStopError: _LOGGER.debug("{} Stop.".format(op_info_prefix)) self._finalize(is_thread_op) break end = int(round(_time() * 1000000)) in_time = end - start _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix, time.time())) # parse channeldata batch try: parsed_data_dict, need_profile_dict, profile_dict, logid_dict\ = self._parse_channeldata_batch( channeldata_dict_batch, output_channels) except ChannelStopError: _LOGGER.debug("{} Stop.".format(op_info_prefix)) self._finalize(is_thread_op) break if len(parsed_data_dict) == 0: # data in the whole batch is all error data continue _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix, time.time())) front_cost = int(round(_time() * 1000000)) - start for data_id, parsed_data in parsed_data_dict.items(): _LOGGER.debug( "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format( data_id, self.name, front_cost / 1000.0)) # preprecess start = profiler.record("prep#{}_0".format(op_info_prefix)) preped_data_dict, err_channeldata_dict, skip_process_dict \ = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict) end = profiler.record("prep#{}_1".format(op_info_prefix)) prep_time = end - start _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format( op_info_prefix, time.time(), prep_time)) try: # put error requests into output channel, skip process and postprocess stage for data_id, err_channeldata in err_channeldata_dict.items(): self._push_to_output_channels( data=err_channeldata, channels=output_channels, client_need_profile=need_profile_dict[data_id], profile_set=profile_dict[data_id]) except ChannelStopError: _LOGGER.debug("{} Stop.".format(op_info_prefix)) self._finalize(is_thread_op) break if len(preped_data_dict) == 0: continue # process start = profiler.record("midp#{}_0".format(op_info_prefix)) midped_data_dict, err_channeldata_dict \ = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict) end = profiler.record("midp#{}_1".format(op_info_prefix)) midp_time = end - start _LOGGER.debug("op:{} process_end:{}, cost:{}".format( op_info_prefix, time.time(), midp_time)) try: for data_id, err_channeldata in err_channeldata_dict.items(): self._push_to_output_channels( data=err_channeldata, channels=output_channels, client_need_profile=need_profile_dict[data_id], profile_set=profile_dict[data_id]) except ChannelStopError: _LOGGER.debug("{} Stop.".format(op_info_prefix)) self._finalize(is_thread_op) break if len(midped_data_dict) == 0: continue # postprocess start = profiler.record("postp#{}_0".format(op_info_prefix)) postped_data_dict, err_channeldata_dict \ = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict) end = profiler.record("postp#{}_1".format(op_info_prefix)) postp_time = end - start after_postp_time = _time() _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format( op_info_prefix, time.time(), postp_time)) try: for data_id, err_channeldata in err_channeldata_dict.items(): self._push_to_output_channels( data=err_channeldata, channels=output_channels, client_need_profile=need_profile_dict[data_id], profile_set=profile_dict[data_id]) except ChannelStopError: _LOGGER.debug("{} Stop.".format(op_info_prefix)) self._finalize(is_thread_op) break if len(postped_data_dict) == 0: continue # push data to channel (if run succ) start = int(round(_time() * 1000000)) try: profile_str = profiler.gen_profile_str() if self.is_jump_op() is True and self.check_jumping( postped_data_dict) is True: # push data to output channel of ops to be jumped for data_id, postped_data in postped_data_dict.items(): if self._server_use_profile: sys.stderr.write(profile_str) self._push_to_output_channels( data=postped_data, channels=output_channels_of_jump_ops, profile_str=profile_str, client_need_profile=need_profile_dict[data_id], profile_set=profile_dict[data_id]) after_outchannel_time = _time() _LOGGER.debug( "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms". format(data_id, self.name, (after_outchannel_time - after_postp_time) * 1000)) else: # push data to output channel. for data_id, postped_data in postped_data_dict.items(): if self._server_use_profile: sys.stderr.write(profile_str) self._push_to_output_channels( data=postped_data, channels=output_channels, profile_str=profile_str, client_need_profile=need_profile_dict[data_id], profile_set=profile_dict[data_id]) after_outchannel_time = _time() _LOGGER.debug( "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms". format(data_id, self.name, (after_outchannel_time - after_postp_time) * 1000)) except ChannelStopError: _LOGGER.debug("{} Stop.".format(op_info_prefix)) self._finalize(is_thread_op) break end = int(round(_time() * 1000000)) out_time = end - start after_outchannel_time = int(round(_time() * 1000000)) if trace_buffer is not None: trace_que.append({ "name": self.name, "actions": { "in": in_time, "prep": prep_time, "midp": midp_time, "postp": postp_time, "out": out_time, } }) while trace_que: info = trace_que[0] try: trace_buffer.put_nowait(info) trace_que.popleft() except Queue.Full: break def _initialize(self, is_thread_op, concurrency_idx): """ Initialize one OP object in the target function of a thread or porcess. Initialize the client object with _client_config and _server_endpoints. Create a TimeProfiler per thread or process for recording profiler info. Args: is_thread_op: True, one op runs in one thread; False, one op runs in one process. concurrency_idx: process id, Thread mode does not use this param. Returns: TimeProfiler """ @ErrorCatch def init_helper(self, is_thread_op, concurrency_idx): if is_thread_op: with self._for_init_op_lock: if not self._succ_init_op: # for the threaded version of Op, each thread cannot get its concurrency_idx self.concurrency_idx = None # init client self.client = self.init_client(self._client_config, self._server_endpoints) # user defined self.init_op() self._succ_init_op = True self._succ_close_op = False else: self.concurrency_idx = concurrency_idx # init client self.client = self.init_client(self._client_config, self._server_endpoints) # user defined self.init_op() init_helper(self, is_thread_op, concurrency_idx) print("[OP Object] init success") # use a separate TimeProfiler per thread or process profiler = TimeProfiler() profiler.enable(True) return profiler def _finalize(self, is_thread_op): if is_thread_op: with self._for_close_op_lock: if not self._succ_close_op: self._profiler = None self.client = None self._succ_init_op = False self._succ_close_op = True def _log(self, info): return "{} {}".format(self.name, info) class RequestOp(Op): """ RequestOp is a special Op, for unpacking one request package. If the request needs one special unpackaging method, you need to inherit class RequestOp and rewrite function unpack_request_package.Notice!!! Class RequestOp does not run preprocess, process, postprocess. """ def __init__(self): """ Initialize the RequestOp """ # PipelineService.name = "@DAGExecutor" super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[]) # init op try: self.init_op() except Exception as e: _LOGGER.critical("Op(Request) Failed to init: {}".format(e)) os._exit(-1) def proto_tensor_2_numpy(self, tensor): """ Convert proto tensor to numpy array, The supported types are as follows: INT64 FP32 INT32 FP64 INT16 FP16 BF16 UINT8 INT8 BOOL BYTES Unsupported type: STRING COMPLEX64 COMPLEX128 Args: tensor: one tensor in request.tensors. Returns: np_data: np.ndnumpy, the tensor data is converted to numpy. lod_info: np.ndnumpy, lod info of the tensor data, None default. """ if tensor is None or tensor.elem_type is None or tensor.name is None: _LOGGER.error("input params of tensor is wrong. tensor: {}".format( tensor)) return None # Set dim shape dims = [] if tensor.shape is None: dims.append(1) else: for one_dim in tensor.shape: dims.append(one_dim) # Set up 2-d lod tensor np_lod = None if len(tensor.lod) > 0: np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1) np_data = None _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format( tensor.name, tensor.elem_type, dims)) if tensor.elem_type == 0: # VarType: INT64 np_data = np.array(tensor.int64_data).astype(int64).reshape(dims) elif tensor.elem_type == 1: # VarType: FP32 np_data = np.array(tensor.float_data).astype(float32).reshape(dims) elif tensor.elem_type == 2: # VarType: INT32 np_data = np.array(tensor.int_data).astype(int32).reshape(dims) elif tensor.elem_type == 3: # VarType: FP64 np_data = np.array(tensor.float64_data).astype(float64).reshape( dims) elif tensor.elem_type == 4: # VarType: INT16 np_data = np.array(tensor.int_data).astype(int16).reshape(dims) elif tensor.elem_type == 5: # VarType: FP16 np_data = np.array(tensor.float_data).astype(float16).reshape(dims) elif tensor.elem_type == 6: # VarType: BF16 np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims) elif tensor.elem_type == 7: # VarType: UINT8 np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims) elif tensor.elem_type == 8: # VarType: INT8 np_data = np.array(tensor.int_data).astype(int8).reshape(dims) elif tensor.elem_type == 9: # VarType: BOOL np_data = np.array(tensor.bool_data).astype(bool).reshape(dims) elif tensor.elem_type == 13: # VarType: BYTES byte_data = BytesIO(tensor.byte_data) np_data = np.load(byte_data, allow_pickle=True) else: _LOGGER.error("Sorry, the type {} of tensor {} is not supported.". format(tensor.elem_type, tensor.name)) raise ValueError( "Sorry, the type {} of tensor {} is not supported.".format( tensor.elem_type, tensor.name)) return np_data, np_lod def unpack_request_package(self, request): """ Unpack request package by gateway.proto Args: request: HTTP body, JSON format Returns: dict_data: json fields in HTTP body log_id: log_id prod_errcode: None or ProductErrCode.SUCC.value default, otherwise, product errores occured.It is handled in the same way as exception. prod_errinfo: "" default """ dict_data = {} log_id = None if request is None: _LOGGER.critical("request is None") raise ValueError("request is None") # unpack key/value string list for idx, key in enumerate(request.key): dict_data[key] = request.value[idx] log_id = request.logid # unpack proto.tensors data. for one_tensor in request.tensors: name = one_tensor.name elem_type = one_tensor.elem_type if one_tensor.name is None: _LOGGER.error("Tensor name is None.") raise ValueError("Tensor name is None.") numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type) if numpy_dtype is None: _LOGGER.error( "elem_type:{} is dismatch in unpack_request_package.", format(elem_type)) raise ValueError("elem_type:{} error".format(elem_type)) if numpy_dtype == "string": new_string = "" if one_tensor.str_data is None: _LOGGER.error( "str_data of tensor:{} is None, elem_type is {}.". format(name, elem_type)) raise ValueError( "str_data of tensor:{} is None, elem_type is {}.". format(name, elem_type)) for one_str in one_tensor.str_data: new_string += one_str dict_data[name] = new_string else: np_data, np_lod = self.proto_tensor_2_numpy(one_tensor) dict_data[name] = np_data if np_lod is not None: dict_data[name + ".lod"] = np_lod _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \ name:{}, method:{}, time:{}" .format(log_id, request.clientip, request.name, request.method, time.time())) return dict_data, log_id, None, "" class ResponseOp(Op): """ ResponseOp is a special Op, for packing one response package. If the channeldata needs a special packaging method, you need to inherit class ReponseOp and rewrite pack_response_package function. Notice!!! Class ResponseOp does not run preprocess, process, postprocess. """ def __init__(self, input_ops): """ Initialize the ResponseOp """ super(ResponseOp, self).__init__( name="@DAGExecutor", input_ops=input_ops) # init op try: self.init_op() except Exception as e: _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format( e, exc_info=True)) os._exit(-1) # init ResponseOp self.is_pack_tensor = False def set_pack_format(self, isTensor=False): self.is_pack_tensor = isTensor def pack_response_package(self, channeldata): """ Getting channeldata from the last channel, packting the response package serialized by protobuf. Args: channeldata: Type ChannelData Returns: resp: pipeline_service_pb2.Response() """ resp = pipeline_service_pb2.Response() error_code = channeldata.error_code error_info = "" if error_code == ChannelDataErrcode.OK.value: # Framework level errors if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value: feed = channeldata.parse() # ndarray to string: # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray np.set_printoptions(threshold=sys.maxsize) for name, var in feed.items(): resp.value.append(var.__repr__()) resp.key.append(name) elif channeldata.datatype == ChannelDataType.DICT.value: feed = channeldata.parse() for name, var in feed.items(): if not isinstance(var, str): error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = self._log( "fetch var type must be str({}).".format( type(var))) _LOGGER.error("(logid={}) Failed to pack RPC " "response package: {}".format( channeldata.id, resp.err_msg)) break resp.value.append(var) resp.key.append(name) else: error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = self._log("error type({}) in datatype.".format( channeldata.datatype)) _LOGGER.error("(logid={}) Failed to pack RPC response" " package: {}".format(channeldata.id, error_info)) else: # Product level errors error_info = channeldata.error_info if error_code == ChannelDataErrcode.PRODUCT_ERROR.value: #rewrite error_code when product errors occured error_code = channeldata.prod_error_code error_info = channeldata.prod_error_info # pack results if error_code is None: error_code = 0 resp.err_no = error_code resp.err_msg = error_info return resp class VirtualOp(Op): """ To connect 2 ops across levels in dag view, we create virtual ops between non-virtual ops, and transfer data only. For examples, the pred ops of F are D & E.In the process of building DAG, we will create channels layer by layer according to dag views.Op F is not in the next layer view of [B, E], so we will create a virtual OP 'V1' whose pred OP is E. And so on, we create two virtual op 'V2' and 'V3', Finally, we find the non-virtual op F. we create 4 channels among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E. DAG: [A -> B -> C -> D -> F] \-> E ----------/ DAG view: [[A], [B, E], [C], [D], [F]] BUILD DAG: [A -> B -> C -> D -> E -> F] \-> E -> V1-> V2-> V3/ """ def __init__(self, name, concurrency=1): super(VirtualOp, self).__init__( name=name, input_ops=None, concurrency=concurrency) self._virtual_pred_ops = [] def add_virtual_pred_op(self, op): """ Add the front op of current vritual op. Args: op: one op object, may be a virtual op or not. Returns: None """ self._virtual_pred_ops.append(op) def _actual_pred_op_names(self, op): """ Recursively find the front op which is a non-virtual op. Args: op: one op object Returns: names: the name of non-virtual pred ops. """ # can use disjoint-set, but it's not necessary if not isinstance(op, VirtualOp): return [op.name] names = [] for x in op._virtual_pred_ops: names.extend(self._actual_pred_op_names(x)) return names def add_output_channel(self, channel): """ Adding the output channel of non-virtual pred ops. Args: channel: one channel. Returns: None. """ if not isinstance(channel, (ThreadChannel, ProcessChannel)): _LOGGER.critical( self._log("Failed to add output_channel: output_channel" " must be Channel type, not {}".format( type(channel)))) os._exit(-1) for op in self._virtual_pred_ops: for op_name in self._actual_pred_op_names(op): channel.add_producer(op_name) self._outputs.append(channel) def _run(self, concurrency_idx, input_channel, output_channels, client_type, is_thread_op): """ The target function _run() only transfers data between OPs in one thread or process. Args: concurrency_idx: process id, not avaliable in thread mode. input_channel: input channel output_channels: output channels client_type: no use is_thread_op: True, thread mode; False, process mode Returns: None """ op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx) log = get_log_func(op_info_prefix) tid = threading.current_thread().ident batch_generator = self._auto_batching_generator( input_channel=input_channel, op_name=self.name, batch_size=1, timeout=None, log_func=log) while True: try: channeldata_dict_batch = next(batch_generator) except ChannelStopError: _LOGGER.debug("{} Stop.".format(op_info_prefix)) self._finalize(is_thread_op) break try: for channeldata_dict in channeldata_dict_batch: for name, data in channeldata_dict.items(): self._push_to_output_channels( data, channels=output_channels, name=name) except ChannelStopError: _LOGGER.debug("{} Stop.".format(op_info_prefix)) self._finalize(is_thread_op) break