# Paddle Serving (简体中文|[English](./README.md)) Paddle Serving是PaddlePaddle的在线预估服务框架,能够帮助开发者轻松实现从移动端、服务器端调用深度学习模型的远程预测服务。当前Paddle Serving以支持PaddlePaddle训练的模型为主,可以与Paddle训练框架联合使用,快速部署预估服务。Paddle Serving围绕常见的工业级深度学习模型部署场景进行设计,一些常见的功能包括多模型管理、模型热加载、基于[Baidu-rpc](https://github.com/apache/incubator-brpc)的高并发低延迟响应能力、在线模型A/B实验等。与Paddle训练框架互相配合的API可以使用户在训练与远程部署之间无缝过度,提升深度学习模型的落地效率。 ------------ ## 快速上手指南 Paddle Serving当前的develop版本支持轻量级Python API进行快速预测,并且与Paddle的训练可以打通。我们以最经典的波士顿房价预测为示例,完整说明在单机进行模型训练以及使用Paddle Serving进行模型部署的过程。 #### 安装 强烈建议您在Docker内构建Paddle Serving,请查看[如何在Docker中运行PaddleServing](RUN_IN_DOCKER_CN.md) ``` pip install paddle-serving-client pip install paddle-serving-server ``` #### 训练脚本 ``` python import sys import paddle import paddle.fluid as fluid train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=16) test_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.uci_housing.test(), buf_size=500), batch_size=16) x = fluid.data(name='x', shape=[None, 13], dtype='float32') y = fluid.data(name='y', shape=[None, 1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_loss = fluid.layers.mean(cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01) sgd_optimizer.minimize(avg_loss) place = fluid.CPUPlace() feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) import paddle_serving_client.io as serving_io for pass_id in range(30): for data_train in train_reader(): avg_loss_value, = exe.run( fluid.default_main_program(), feed=feeder.feed(data_train), fetch_list=[avg_loss]) serving_io.save_model( "serving_server_model", "serving_client_conf", {"x": x}, {"y": y_predict}, fluid.default_main_program()) ``` #### 服务器端代码 ``` python import sys from paddle_serving.serving_server import OpMaker from paddle_serving.serving_server import OpSeqMaker from paddle_serving.serving_server import Server op_maker = OpMaker() read_op = op_maker.create('general_reader') general_infer_op = op_maker.create('general_infer') op_seq_maker = OpSeqMaker() op_seq_maker.add_op(read_op) op_seq_maker.add_op(general_infer_op) server = Server() server.set_op_sequence(op_seq_maker.get_op_sequence()) server.load_model_config(sys.argv[1]) server.prepare_server(workdir="work_dir1", port=9393, device="cpu") server.run_server() ``` #### 服务器端启动 ``` shell python test_server.py serving_server_model ``` #### 客户端预测 ``` python from paddle_serving_client import Client import paddle import sys client = Client() client.load_client_config(sys.argv[1]) client.connect(["127.0.0.1:9292"]) test_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.uci_housing.test(), buf_size=500), batch_size=1) for data in test_reader(): fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["y"]) print("{} {}".format(fetch_map["y"][0], data[0][1][0])) ``` ### 文档 [设计文档](DESIGN_CN.md) [FAQ](./deprecated/FAQ.md) ### 资深开发者使用指南 [编译指南](COMPILE_CN.md) ## 贡献 如果你想要给Paddle Serving做贡献,请参考[贡献指南](CONTRIBUTE.md)