# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client from paddle_serving_app.reader import * import sys import numpy as np preprocess = Sequential([ File2Image(), BGR2RGB(), Div(255.0), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False), Resize(640, 640), Transpose((2, 0, 1)) ]) postprocess = RCNNPostprocess("label_list.txt", "output") client = Client() client.load_client_config(sys.argv[1]) client.connect([':8870']) im = preprocess(sys.argv[3]) fetch_map = client.predict( feed={ "image": im, "im_info": np.array(list(im.shape[1:]) + [1.0]), "im_shape": np.array(list(im.shape[1:]) + [1.0]) }, fetch=["multiclass_nms"]) fetch_map["image"] = sys.argv[3] postprocess(fetch_map)