# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from paddle_serving_client import Client from paddle_serving_client.metric import auc from paddle_serving_client.utils import MultiThreadRunner import time def predict(thr_id, resource): client = Client() client.load_client_config(resource["conf_file"]) client.connect(resource["server_endpoint"]) thread_num = resource["thread_num"] file_list = resource["filelist"] line_id = 0 prob = [] label_list = [] dataset = [] for fn in file_list: fin = open(fn) for line in fin: if line_id % thread_num == thr_id - 1: group = line.strip().split() words = [int(x) for x in group[1:int(group[0])]] label = [int(group[-1])] feed = {"words": words, "label": label} dataset.append(feed) line_id += 1 fin.close() start = time.time() fetch = ["acc", "cost", "prediction"] infer_time_list = [] counter = 0 feed_list = [] for inst in dataset: counter += 1 feed_list.append(inst) if counter == resource["batch_size"]: fetch_map_batch, infer_time = client.batch_predict( feed_batch=feed_list, fetch=fetch, profile=True) #prob.append(fetch_map["prediction"][1]) #label_list.append(label[0]) infer_time_list.append(infer_time) counter = 0 feed_list = [] if counter != 0: fetch_map_batch, infer_time = client.batch_predict( feed_batch=feed_list, fetch=fetch, profile=True) infer_time_list.append(infer_time) end = time.time() client.release() return [prob, label_list, [sum(infer_time_list)], [end - start]] if __name__ == '__main__': conf_file = sys.argv[1] data_file = sys.argv[2] resource = {} resource["conf_file"] = conf_file resource["server_endpoint"] = ["127.0.0.1:9292"] resource["filelist"] = [data_file] resource["thread_num"] = int(sys.argv[3]) resource["batch_size"] = int(sys.argv[4]) thread_runner = MultiThreadRunner() result = thread_runner.run(predict, int(sys.argv[3]), resource) print("thread num {}\tbatch size {}\ttotal time {}".format(sys.argv[ 3], resource["batch_size"], sum(result[-1]) / len(result[-1]))) print("thread num {}\tbatch size {}\tinfer time {}".format( sys.argv[3], resource["batch_size"], sum(result[2]) / 1000.0 / 1000.0 / len(result[2])))