// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "core/general-server/op/general_copy_op.h" #include #include #include #include #include "core/general-server/op/general_infer_helper.h" #include "core/predictor/framework/infer.h" #include "core/predictor/framework/memory.h" #include "core/util/include/timer.h" namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::Timer; using baidu::paddle_serving::predictor::MempoolWrapper; using baidu::paddle_serving::predictor::general_model::Tensor; using baidu::paddle_serving::predictor::general_model::Request; using baidu::paddle_serving::predictor::general_model::FeedInst; using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; int GeneralCopyOp::inference() { // reade request from client const std::vector pre_node_names = pre_names(); if (pre_node_names.size() != 1) { LOG(ERROR) << "This op(" << op_name() << ") can only have one predecessor op, but received " << pre_node_names.size(); return -1; } const std::string pre_name = pre_node_names[0]; const GeneralBlob *input_blob = get_depend_argument(pre_name); uint64_t log_id = input_blob->GetLogId(); VLOG(2) << "(logid=" << log_id << ") precedent name: " << pre_name; const TensorVector *in = &input_blob->tensor_vector; VLOG(2) << "(logid=" << log_id << ") input size: " << in->size(); int batch_size = input_blob->GetBatchSize(); int input_var_num = 0; GeneralBlob *res = mutable_data(); res->SetLogId(log_id); TensorVector *out = &res->tensor_vector; VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size; res->SetBatchSize(batch_size); if (!res) { LOG(ERROR) << "(logid=" << log_id << ") Failed get op tls reader object output"; } Timer timeline; int64_t start = timeline.TimeStampUS(); VLOG(2) << "(logid=" << log_id << ") Going to init lod tensor"; for (int i = 0; i < in->size(); ++i) { paddle::PaddleTensor lod_tensor; CopyLod(&in->at(i), &lod_tensor); lod_tensor.dtype = in->at(i).dtype; lod_tensor.name = in->at(i).name; VLOG(2) << "(logid=" << log_id << ") lod tensor [" << i << "].name = " << lod_tensor.name; out->push_back(lod_tensor); } VLOG(2) << "(logid=" << log_id << ") pack done."; for (int i = 0; i < out->size(); ++i) { int64_t *src_ptr = static_cast(in->at(i).data.data()); out->at(i).data.Resize(out->at(i).lod[0].back() * sizeof(int64_t)); out->at(i).shape = {out->at(i).lod[0].back(), 1}; int64_t *tgt_ptr = static_cast(out->at(i).data.data()); for (int j = 0; j < out->at(i).lod[0].back(); ++j) { tgt_ptr[j] = src_ptr[j]; } } VLOG(2) << "(logid=" << log_id << ") output done."; timeline.Pause(); int64_t end = timeline.TimeStampUS(); CopyBlobInfo(input_blob, res); AddBlobInfo(res, start); AddBlobInfo(res, end); VLOG(2) << "(logid=" << log_id << ") read data from client success"; return 0; } DEFINE_OP(GeneralCopyOp); } // namespace serving } // namespace paddle_serving } // namespace baidu