# How to write an general operator? ([简体中文](./NEW_OPERATOR_CN.md)|English) In this document, we mainly focus on how to develop a new server side operator for PaddleServing. Before we start to write a new operator, let's look at some sample code to get the basic idea of writing a new operator for server. We assume you have known the basic computation logic on server side of PaddleServing, please reference to []() if you do not know much about it. The following code can be visited at `core/general-server/op` of Serving repo. ``` c++ // Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #ifdef BCLOUD #ifdef WITH_GPU #include "paddle/paddle_inference_api.h" #else #include "paddle/fluid/inference/api/paddle_inference_api.h" #endif #else #include "paddle_inference_api.h" // NOLINT #endif #include "core/general-server/general_model_service.pb.h" #include "core/general-server/op/general_infer_helper.h" namespace baidu { namespace paddle_serving { namespace serving { class GeneralInferOp : public baidu::paddle_serving::predictor::OpWithChannel { public: typedef std::vector TensorVector; DECLARE_OP(GeneralInferOp); int inference(); }; } // namespace serving } // namespace paddle_serving } // namespace baidu ``` ## Define an operator The header file above declares a PaddleServing operator called `GeneralInferOp`. At runtime, the function `int inference()` will be called. Usually we define a server side operator to be a subclass of`baidu::paddle_serving::predictor::OpWithChannel`, and `GeneralBlob` data structure is used. ## Use `GeneralBlob` between operators `GeneralBlob` is a data structure that can be used between server side operators. The `tensor_vector` is the most important data structure in `GeneralBlob`. An operator on server side can have multiple `paddle::PaddleTensor` as inputs, and have multiple `paddle::PaddleTensor` as outputs. In particular, `tensor_vector` can be feed into Paddle inference engine directly with zero copy. ``` c++ struct GeneralBlob { std::vector tensor_vector; int64_t time_stamp[20]; int p_size = 0; int _batch_size; void Clear() { size_t tensor_count = tensor_vector.size(); for (size_t ti = 0; ti < tensor_count; ++ti) { tensor_vector[ti].shape.clear(); } tensor_vector.clear(); } int SetBatchSize(int batch_size) { _batch_size = batch_size; } int GetBatchSize() const { return _batch_size; } std::string ShortDebugString() const { return "Not implemented!"; } }; ``` ### Implement `int Inference()` ``` c++ int GeneralInferOp::inference() { VLOG(2) << "Going to run inference"; const GeneralBlob *input_blob = get_depend_argument(pre_name()); VLOG(2) << "Get precedent op name: " << pre_name(); GeneralBlob *output_blob = mutable_data(); if (!input_blob) { LOG(ERROR) << "Failed mutable depended argument, op:" << pre_name(); return -1; } const TensorVector *in = &input_blob->tensor_vector; TensorVector *out = &output_blob->tensor_vector; int batch_size = input_blob->GetBatchSize(); VLOG(2) << "input batch size: " << batch_size; output_blob->SetBatchSize(batch_size); VLOG(2) << "infer batch size: " << batch_size; Timer timeline; int64_t start = timeline.TimeStampUS(); timeline.Start(); if (InferManager::instance().infer(GENERAL_MODEL_NAME, in, out, batch_size)) { LOG(ERROR) << "Failed do infer in fluid model: " << GENERAL_MODEL_NAME; return -1; } int64_t end = timeline.TimeStampUS(); CopyBlobInfo(input_blob, output_blob); AddBlobInfo(output_blob, start); AddBlobInfo(output_blob, end); return 0; } DEFINE_OP(GeneralInferOp); ``` `input_blob` and `output_blob` both have multiple `paddle::PaddleTensor`, and the Paddle Inference library can be called through `InferManager::instance().infer(GENERAL_MODEL_NAME, in, out, batch_size)`. Most of the other code in this function is about profiling, we may remove redudant code in the future as well. Basically, the above code can implement a new operator. If you want to visit dictionary resource, you can reference `core/predictor/framework/resource.cpp` to add global visible resources. The initialization of resources is executed at the runtime of starting server. ## Define Python API After you have defined a C++ operator on server side for Paddle Serving, the last step is to add a registration in Python API for PaddleServing server API, `python/paddle_serving_server/__init__.py` in the repo has the code piece. ``` c++ self.op_dict = { "general_infer": "GeneralInferOp", "general_reader": "GeneralReaderOp", "general_response": "GeneralResponseOp", "general_text_reader": "GeneralTextReaderOp", "general_text_response": "GeneralTextResponseOp", "general_single_kv": "GeneralSingleKVOp", "general_dist_kv": "GeneralDistKVOp" } ```