# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from paddle_serving_server_gpu.web_service import WebService, Op except ImportError: from paddle_serving_server.web_service import WebService, Op import logging import numpy as np import sys from paddle_serving_app.reader import ChineseBertReader _LOGGER = logging.getLogger() class BertOp(Op): def init_op(self): self.reader = ChineseBertReader({ "vocab_file": "vocab.txt", "max_seq_len": 128 }) def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() print("input dict", input_dict) batch_size = len(input_dict.keys()) feed_res = [] for i in range(batch_size): feed_dict = self.reader.process(input_dict[str(i)].encode("utf-8")) for key in feed_dict.keys(): feed_dict[key] = np.array(feed_dict[key]).reshape( (1, len(feed_dict[key]), 1)) feed_res.append(feed_dict) feed_dict = {} for key in feed_res[0].keys(): feed_dict[key] = np.concatenate([x[key] for x in feed_res], axis=0) print(key, feed_dict[key].shape) return feed_dict, False, None, "" def postprocess(self, input_dicts, fetch_dict, log_id): fetch_dict["pooled_output"] = str(fetch_dict["pooled_output"]) return fetch_dict, None, "" class BertService(WebService): def get_pipeline_response(self, read_op): bert_op = BertOp(name="bert", input_ops=[read_op]) return bert_op bert_service = BertService(name="bert") bert_service.prepare_pipeline_config("config.yml") bert_service.run_service()