# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np def transpose(img, transpose_target): img = img.transpose(transpose_target) return img def normalize(img, mean, std, channel_first): # need to optimize here if channel_first: img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) else: img_mean = np.array(mean).reshape((1, 1, 3)) img_std = np.array(std).reshape((1, 1, 3)) img = np.array(img).astype("float32") img -= img_mean img /= img_std return img def crop(img, target_size, center): height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) // 2 h_start = (height - size) // 2 else: w_start = np.random.randint(0, width - size + 1) h_start = np.random.randint(0, height - size + 1) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img def resize(img, target_size, max_size=2147483647, interpolation=None): if isinstance(target_size, tuple): resized_width = min(target_size[0], max_size) resized_height = min(target_size[1], max_size) else: im_max_size = max(img.shape[0], img.shape[1]) percent = float(target_size) / min(img.shape[0], img.shape[1]) if np.round(percent * im_max_size) > max_size: percent = float(max_size) / float(im_max_size) resized_width = int(round(img.shape[1] * percent)) resized_height = int(round(img.shape[0] * percent)) if interpolation: resized = cv2.resize( img, (resized_width, resized_height), interpolation=interpolation) else: resized = cv2.resize(img, (resized_width, resized_height)) return resized