// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "core/general-server/op/general_infer_op.h" #include #include #include #include #include "core/predictor/framework/infer.h" #include "core/predictor/framework/memory.h" #include "core/predictor/framework/resource.h" #include "core/util/include/timer.h" namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::Timer; using baidu::paddle_serving::predictor::MempoolWrapper; using baidu::paddle_serving::predictor::general_model::Tensor; using baidu::paddle_serving::predictor::general_model::Response; using baidu::paddle_serving::predictor::general_model::Request; using baidu::paddle_serving::predictor::general_model::FetchInst; using baidu::paddle_serving::predictor::InferManager; using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; int GeneralInferOp::inference() { VLOG(2) << "Going to run inference"; const std::vector pre_node_names = pre_names(); if (pre_node_names.size() != 1) { LOG(ERROR) << "This op(" << op_name() << ") can only have one predecessor op, but received " << pre_node_names.size(); return -1; } const std::string pre_name = pre_node_names[0]; const GeneralBlob *input_blob = get_depend_argument(pre_name); VLOG(2) << "Get precedent op name: " << pre_name; GeneralBlob *output_blob = mutable_data(); if (!input_blob) { LOG(ERROR) << "Failed mutable depended argument, op:" << pre_name; return -1; } const TensorVector *in = &input_blob->tensor_vector; TensorVector *out = &output_blob->tensor_vector; int batch_size = input_blob->GetBatchSize(); VLOG(2) << "input batch size: " << batch_size; output_blob->SetBatchSize(batch_size); VLOG(2) << "infer batch size: " << batch_size; Timer timeline; int64_t start = timeline.TimeStampUS(); timeline.Start(); if (InferManager::instance().infer( engine_name().c_str(), in, out, batch_size)) { LOG(ERROR) << "Failed do infer in fluid model: " << engine_name().c_str(); return -1; } int64_t end = timeline.TimeStampUS(); CopyBlobInfo(input_blob, output_blob); AddBlobInfo(output_blob, start); AddBlobInfo(output_blob, end); return 0; } DEFINE_OP(GeneralInferOp); } // namespace serving } // namespace paddle_serving } // namespace baidu