# Paddle Serving低精度部署 (简体中文|[English](./LOW_PRECISION_DEPLOYMENT.md)) 低精度部署, 在Intel CPU上支持int8、bfloat16模型,Nvidia TensorRT支持int8、float16模型。 ## 通过PaddleSlim量化生成低精度模型 详细见[PaddleSlim量化](https://paddleslim.readthedocs.io/zh_CN/latest/tutorials/quant/overview.html) ## 使用TensorRT int8加载PaddleSlim Int8量化模型进行部署 首先下载Resnet50 [PaddleSlim量化模型](https://paddle-inference-dist.bj.bcebos.com/inference_demo/python/resnet50/ResNet50_quant.tar.gz),并转换为Paddle Serving支持的部署模型格式。 ``` wget https://paddle-inference-dist.bj.bcebos.com/inference_demo/python/resnet50/ResNet50_quant.tar.gz tar zxvf ResNet50_quant.tar.gz python -m paddle_serving_client.convert --dirname ResNet50_quant ``` 启动rpc服务, 设定所选GPU id、部署模型精度 ``` python -m paddle_serving_server.serve --model serving_server --port 9393 --gpu_ids 0 --use_trt --precision int8 ``` 使用client进行请求 ``` from paddle_serving_client import Client from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize client = Client() client.load_client_config( "resnet_v2_50_imagenet_client/serving_client_conf.prototxt") client.connect(["127.0.0.1:9393"]) seq = Sequential([ File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) ]) image_file = "daisy.jpg" img = seq(image_file) fetch_map = client.predict(feed={"image": img}, fetch=["score"]) print(fetch_map["score"].reshape(-1)) ``` ## 参考文档 * [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim) * PaddleInference Intel CPU部署量化模型[文档](https://paddle-inference.readthedocs.io/en/latest/optimize/paddle_x86_cpu_int8.html) * PaddleInference NV GPU部署量化模型[文档](https://paddle-inference.readthedocs.io/en/latest/optimize/paddle_trt.html)