Build Status Release Issues License Slack

Motivation

Paddle Serving helps deep learning developers deploy an online inference service without much effort. **The goal of this project**: once you have trained a deep neural nets with [Paddle](https://github.com/PaddlePaddle/Paddle), you already have a model inference service. A demo of serving is as follows:

Key Features

- Integrate with Paddle training pipeline seemlessly, most paddle models can be deployed **with one line command**. - **Industrial serving features** supported, such as models management, online loading, online A/B testing etc. - **Distributed Key-Value indexing** supported that is especially useful for large scale sparse features as model inputs. - **Highly concurrent and efficient communication** between clients and servers. - **Multiple programming languages** supported on client side, such as Golang, C++ and python - **Extensible framework design** that can support model serving beyond Paddle.

Installation

We highly recommend you to run Paddle Serving in Docker, please visit [Run in Docker](https://github.com/PaddlePaddle/Serving/blob/develop/doc/RUN_IN_DOCKER.md) ```shell pip install paddle-serving-client pip install paddle-serving-server ```

Quick Start Example

### Boston House Price Prediction model ``` shell wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz tar -xzf uci_housing.tar.gz ``` Paddle Serving provides HTTP and RPC based service for users to access ### HTTP service Paddle Serving provides a built-in python module called `paddle_serving_server.serve` that can start a rpc service or a http service with one-line command. If we specify the argument `--name uci`, it means that we will have a HTTP service with a url of `$IP:$PORT/uci/prediction` ``` shell python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci ```
| Argument | Type | Default | Description | |--------------|------|-----------|--------------------------------| | `thread` | int | `10` | Concurrency of current service | | `port` | int | `9292` | Exposed port of current service to users| | `name` | str | `""` | Service name, can be used to generate HTTP request url | | `model` | str | `""` | Path of paddle model directory to be served | Here, we use `curl` to send a HTTP POST request to the service we just started. Users can use any python library to send HTTP POST as well, e.g, [requests](https://requests.readthedocs.io/en/master/).
``` shell curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction ``` ### RPC service A user can also start a rpc service with `paddle_serving_server.serve`. RPC service is usually faster than HTTP service, although a user needs to do some coding based on Paddle Serving's python client API. Note that we do not specify `--name` here. ``` shell python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 ``` ``` python # A user can visit rpc service through paddle_serving_client API from paddle_serving_client import Client client = Client() client.load_client_config("uci_housing_client/serving_client_conf.prototxt") client.connect(["127.0.0.1:9292"]) data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332] fetch_map = client.predict(feed={"x": data}, fetch=["price"]) print(fetch_map) ``` Here, `client.predict` function has two arguments. `feed` is a `python dict` with model input variable alias name and values. `fetch` assigns the prediction variables to be returned from servers. In the example, the name of `"x"` and `"price"` are assigned when the servable model is saved during training.

Pre-built services with Paddle Serving

Chinese Word Segmentation

- **Description**: ``` shell Chinese word segmentation HTTP service that can be deployed with one line command. ``` - **Download Servable Package**: ``` shell wget --no-check-certificate https://paddle-serving.bj.bcebos.com/lac/lac_model_jieba_web.tar.gz ``` - **Host web service**: ``` shell tar -xzf lac_model_jieba_web.tar.gz python lac_web_service.py jieba_server_model/ lac_workdir 9292 ``` - **Request sample**: ``` shell curl -H "Content-Type:application/json" -X POST -d '{"words": "我爱北京天安门", "fetch":["word_seg"]}' http://127.0.0.1:9292/lac/prediction ``` - **Request result**: ``` shell {"word_seg":"我|爱|北京|天安门"} ```

Image Classification

- **Description**: ``` shell Image classification trained with Imagenet dataset. A label and corresponding probability will be returned. ``` - **Download Servable Package**: ``` shell wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/imagenet_demo.tar.gz ``` - **Host web service**: ``` shell tar -xzf imagenet_demo.tar.gz python image_classification_service_demo.py resnet50_serving_model ``` - **Request sample**:



``` shell curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg", "fetch": ["score"]}' http://127.0.0.1:9292/image/prediction ``` - **Request result**: ``` shell {"label":"daisy","prob":0.9341403245925903} ```

Document

### New to Paddle Serving - [How to save a servable model?](doc/SAVE.md) - [An end-to-end tutorial from training to serving](doc/END_TO_END.md) - [Write Bert-as-Service in 10 minutes](doc/Bert_10_mins.md) ### Developers - [How to config Serving native operators on server side?](doc/SERVER_DAG.md) - [How to develop a new Serving operator](doc/NEW_OPERATOR.md) - [Golang client](doc/IMDB_GO_CLIENT.md) - [Compile from source code(Chinese)](doc/COMPILE.md) ### About Efficiency - [How profile serving efficiency?(Chinese)](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/util) - [Benchmarks](doc/BENCHMARK.md) ### FAQ - [FAQ(Chinese)](doc/FAQ.md) ### Design - [Design Doc(Chinese)](doc/DESIGN.md)

Community

### Slack To connect with other users and contributors, welcome to join our [Slack channel](https://paddleserving.slack.com/archives/CUBPKHKMJ) ### Contribution If you want to contribute code to Paddle Serving, please reference [Contribution Guidelines](doc/CONTRIBUTE.md) ### Feedback For any feedback or to report a bug, please propose a [GitHub Issue](https://github.com/PaddlePaddle/Serving/issues). ### License [Apache 2.0 License](https://github.com/PaddlePaddle/Serving/blob/develop/LICENSE)