# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle.fluid import Executor from paddle.fluid.compiler import CompiledProgram from paddle.fluid.framework import core from paddle.fluid.framework import default_main_program from paddle.fluid.framework import Program from paddle.fluid import CPUPlace from paddle.fluid.io import save_inference_model import paddle.fluid as fluid from ..proto import general_model_config_pb2 as model_conf import os import paddle import paddle.nn.functional as F from paddle.jit import to_static def save_dygraph_model(serving_model_folder, client_config_folder, model): paddle.jit.save(model, "serving_tmp") loaded_layer = paddle.jit.load(path=".", model_filename="serving_tmp.pdmodel", params_filename="serving_tmp.pdiparams") feed_target_names = [x.name for x in loaded_layer._input_spec()] fetch_target_names = [x.name for x in loaded_layer._output_spec()] inference_program = loaded_layer.program() feed_var_dict = { x: inference_program.global_block().var(x) for x in feed_target_names } fetch_var_dict = { x: inference_program.global_block().var(x) for x in fetch_target_names } config = model_conf.GeneralModelConfig() #int64 = 0; float32 = 1; int32 = 2; for key in feed_var_dict: feed_var = model_conf.FeedVar() feed_var.alias_name = key feed_var.name = feed_var_dict[key].name feed_var.is_lod_tensor = feed_var_dict[key].lod_level >= 1 if feed_var_dict[key].dtype == core.VarDesc.VarType.INT64: feed_var.feed_type = 0 if feed_var_dict[key].dtype == core.VarDesc.VarType.FP32: feed_var.feed_type = 1 if feed_var_dict[key].dtype == core.VarDesc.VarType.INT32: feed_var.feed_type = 2 if feed_var.is_lod_tensor: feed_var.shape.extend([-1]) else: tmp_shape = [] for v in feed_var_dict[key].shape: if v >= 0: tmp_shape.append(v) feed_var.shape.extend(tmp_shape) config.feed_var.extend([feed_var]) for key in fetch_var_dict: fetch_var = model_conf.FetchVar() fetch_var.alias_name = key fetch_var.name = fetch_var_dict[key].name fetch_var.is_lod_tensor = 1 if fetch_var_dict[key].dtype == core.VarDesc.VarType.INT64: fetch_var.fetch_type = 0 if fetch_var_dict[key].dtype == core.VarDesc.VarType.FP32: fetch_var.fetch_type = 1 if fetch_var_dict[key].dtype == core.VarDesc.VarType.INT32: fetch_var.fetch_type = 2 if fetch_var.is_lod_tensor: fetch_var.shape.extend([-1]) else: tmp_shape = [] for v in fetch_var_dict[key].shape: if v >= 0: tmp_shape.append(v) fetch_var.shape.extend(tmp_shape) config.fetch_var.extend([fetch_var]) cmd = "mkdir -p {}".format(client_config_folder) os.system(cmd) cmd = "mkdir -p {}".format(serving_model_folder) os.system(cmd) cmd = "mv {} {}/__model__".format("serving_tmp.pdmodel", serving_model_folder) os.system(cmd) cmd = "mv {} {}/__params__".format("serving_tmp.pdiparams", serving_model_folder) os.system(cmd) cmd = "rm -rf serving_tmp.pd*" os.system(cmd) with open("{}/serving_client_conf.prototxt".format(client_config_folder), "w") as fout: fout.write(str(config)) with open("{}/serving_server_conf.prototxt".format(serving_model_folder), "w") as fout: fout.write(str(config)) with open("{}/serving_client_conf.stream.prototxt".format( client_config_folder), "wb") as fout: fout.write(config.SerializeToString()) with open("{}/serving_server_conf.stream.prototxt".format( serving_model_folder), "wb") as fout: fout.write(config.SerializeToString()) def save_model(server_model_folder, client_config_folder, feed_var_dict, fetch_var_dict, main_program=None): executor = Executor(place=CPUPlace()) feed_var_names = [feed_var_dict[x].name for x in feed_var_dict] target_vars = [] target_var_names = [] for key in sorted(fetch_var_dict.keys()): target_vars.append(fetch_var_dict[key]) target_var_names.append(key) save_inference_model( server_model_folder, feed_var_names, target_vars, executor, model_filename="__model__", params_filename="__params__", main_program=main_program) config = model_conf.GeneralModelConfig() #int64 = 0; float32 = 1; int32 = 2; for key in feed_var_dict: feed_var = model_conf.FeedVar() feed_var.alias_name = key feed_var.name = feed_var_dict[key].name feed_var.is_lod_tensor = feed_var_dict[key].lod_level >= 1 if feed_var_dict[key].dtype == core.VarDesc.VarType.INT64: feed_var.feed_type = 0 if feed_var_dict[key].dtype == core.VarDesc.VarType.FP32: feed_var.feed_type = 1 if feed_var_dict[key].dtype == core.VarDesc.VarType.INT32: feed_var.feed_type = 2 if feed_var.is_lod_tensor: feed_var.shape.extend([-1]) else: tmp_shape = [] for v in feed_var_dict[key].shape: if v >= 0: tmp_shape.append(v) feed_var.shape.extend(tmp_shape) config.feed_var.extend([feed_var]) for key in target_var_names: fetch_var = model_conf.FetchVar() fetch_var.alias_name = key fetch_var.name = fetch_var_dict[key].name #fetch_var.is_lod_tensor = fetch_var_dict[key].lod_level >= 1 fetch_var.is_lod_tensor = 1 if fetch_var_dict[key].dtype == core.VarDesc.VarType.INT64: fetch_var.fetch_type = 0 if fetch_var_dict[key].dtype == core.VarDesc.VarType.FP32: fetch_var.fetch_type = 1 if fetch_var_dict[key].dtype == core.VarDesc.VarType.INT32: fetch_var.fetch_type = 2 if fetch_var.is_lod_tensor: fetch_var.shape.extend([-1]) else: tmp_shape = [] for v in fetch_var_dict[key].shape: if v >= 0: tmp_shape.append(v) fetch_var.shape.extend(tmp_shape) config.fetch_var.extend([fetch_var]) try: save_dirname = os.path.normpath(client_config_folder) os.makedirs(save_dirname) except OSError as e: if e.errno != errno.EEXIST: raise with open("{}/serving_client_conf.prototxt".format(client_config_folder), "w") as fout: fout.write(str(config)) with open("{}/serving_server_conf.prototxt".format(server_model_folder), "w") as fout: fout.write(str(config)) with open("{}/serving_client_conf.stream.prototxt".format( client_config_folder), "wb") as fout: fout.write(config.SerializeToString()) with open("{}/serving_server_conf.stream.prototxt".format( server_model_folder), "wb") as fout: fout.write(config.SerializeToString()) def inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None): paddle.enable_static() place = fluid.CPUPlace() exe = fluid.Executor(place) inference_program, feed_target_names, fetch_targets = \ fluid.io.load_inference_model(dirname=dirname, executor=exe, model_filename=model_filename, params_filename=params_filename) feed_dict = { x: inference_program.global_block().var(x) for x in feed_target_names } fetch_dict = {x.name: x for x in fetch_targets} save_model(serving_server, serving_client, feed_dict, fetch_dict, inference_program) feed_names = feed_dict.keys() fetch_names = fetch_dict.keys() return feed_names, fetch_names