# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle.fluid import Executor from paddle.fluid.compiler import CompiledProgram from paddle.fluid.framework import core from paddle.fluid.framework import default_main_program from paddle.fluid.framework import Program from paddle.fluid import CPUPlace from .paddle_io import save_inference_model, normalize_program import paddle.fluid as fluid from paddle.fluid.core import CipherUtils from paddle.fluid.core import CipherFactory from paddle.fluid.core import Cipher from ..proto import general_model_config_pb2 as model_conf import os import paddle import paddle.nn.functional as F import errno from paddle.jit import to_static _PADDLE_DTYPE_2_NUMPY_DTYPE = { core.VarDesc.VarType.BOOL: 'bool', core.VarDesc.VarType.FP16: 'float16', core.VarDesc.VarType.BF16: 'uint16', core.VarDesc.VarType.FP32: 'float32', core.VarDesc.VarType.FP64: 'float64', core.VarDesc.VarType.INT8: 'int8', core.VarDesc.VarType.INT16: 'int16', core.VarDesc.VarType.INT32: 'int32', core.VarDesc.VarType.INT64: 'int64', core.VarDesc.VarType.UINT8: 'uint8', core.VarDesc.VarType.COMPLEX64: 'complex64', core.VarDesc.VarType.COMPLEX128: 'complex128', } def save_dygraph_model(serving_model_folder, client_config_folder, model): paddle.jit.save(model, "serving_tmp") loaded_layer = paddle.jit.load( path=".", model_filename="serving_tmp.pdmodel", params_filename="serving_tmp.pdiparams") feed_target_names = [x.name for x in loaded_layer._input_spec()] fetch_target_names = [x.name for x in loaded_layer._output_spec()] inference_program = loaded_layer.program() feed_var_dict = { x: inference_program.global_block().var(x) for x in feed_target_names } fetch_var_dict = { x: inference_program.global_block().var(x) for x in fetch_target_names } config = model_conf.GeneralModelConfig() for key in feed_var_dict: feed_var = model_conf.FeedVar() feed_var.alias_name = key feed_var.name = feed_var_dict[key].name feed_var.feed_type = var_type_conversion(feed_var_dict[key].dtype) feed_var.is_lod_tensor = feed_var_dict[key].lod_level >= 1 if feed_var.is_lod_tensor: feed_var.shape.extend([-1]) else: tmp_shape = [] for v in feed_var_dict[key].shape: if v >= 0: tmp_shape.append(v) feed_var.shape.extend(tmp_shape) config.feed_var.extend([feed_var]) for key in fetch_var_dict: fetch_var = model_conf.FetchVar() fetch_var.alias_name = key fetch_var.name = fetch_var_dict[key].name fetch_var.fetch_type = var_type_conversion(fetch_var_dict[key].dtype) fetch_var.is_lod_tensor = 1 if fetch_var.is_lod_tensor: fetch_var.shape.extend([-1]) else: tmp_shape = [] for v in fetch_var_dict[key].shape: if v >= 0: tmp_shape.append(v) fetch_var.shape.extend(tmp_shape) config.fetch_var.extend([fetch_var]) cmd = "mkdir -p {}".format(client_config_folder) os.system(cmd) cmd = "mkdir -p {}".format(serving_model_folder) os.system(cmd) cmd = "mv {} {}/__model__".format("serving_tmp.pdmodel", serving_model_folder) os.system(cmd) cmd = "mv {} {}/__params__".format("serving_tmp.pdiparams", serving_model_folder) os.system(cmd) cmd = "rm -rf serving_tmp.pd*" os.system(cmd) with open("{}/serving_client_conf.prototxt".format(client_config_folder), "w") as fout: fout.write(str(config)) with open("{}/serving_server_conf.prototxt".format(serving_model_folder), "w") as fout: fout.write(str(config)) with open("{}/serving_client_conf.stream.prototxt".format( client_config_folder), "wb") as fout: fout.write(config.SerializeToString()) with open("{}/serving_server_conf.stream.prototxt".format( serving_model_folder), "wb") as fout: fout.write(config.SerializeToString()) def var_type_conversion(dtype): """ Variable type conversion Args: dtype: type of core.VarDesc.VarType.xxxxx (https://github.com/PaddlePaddle/Paddle/blob/release/2.1/python/paddle/framework/dtype.py) Returns: (int)type value, -1 is type matching failed. int64 => 0; float32 => 1; int32 => 2; float64 => 3; int16 => 4; float16 => 5; bfloat16 => 6; uint8 => 7; int8 => 8; bool => 9; complex64 => 10, complex128 => 11; """ type_val = -1 if dtype == core.VarDesc.VarType.INT64: type_val = 0 elif dtype == core.VarDesc.VarType.FP32: type_val = 1 elif dtype == core.VarDesc.VarType.INT32: type_val = 2 elif dtype == core.VarDesc.VarType.FP64: type_val = 3 elif dtype == core.VarDesc.VarType.INT16: type_val = 4 elif dtype == core.VarDesc.VarType.FP16: type_val = 5 elif dtype == core.VarDesc.VarType.BF16: type_val = 6 elif dtype == core.VarDesc.VarType.UINT8: type_val = 7 elif dtype == core.VarDesc.VarType.INT8: type_val = 8 elif dtype == core.VarDesc.VarType.BOOL: type_val = 9 elif dtype == core.VarDesc.VarType.COMPLEX64: type_val = 10 elif dtype == core.VarDesc.VarType.COMPLEX128: type_val = 11 else: type_val = -1 return type_val def save_model(server_model_folder, client_config_folder, feed_var_dict, fetch_var_dict, main_program=None, encryption=False, key_len=128, encrypt_conf=None, model_filename=None, params_filename=None, show_proto=False, feed_alias_names=None, fetch_alias_names=None): executor = Executor(place=CPUPlace()) feed_var_names = [feed_var_dict[x].name for x in feed_var_dict] feed_vars = [feed_var_dict[x] for x in feed_var_dict] target_vars = [] target_var_names = [] for key in sorted(fetch_var_dict.keys()): target_vars.append(fetch_var_dict[key]) target_var_names.append(key) main_program = normalize_program(main_program, feed_vars, target_vars) if not encryption and not show_proto: if not os.path.exists(server_model_folder): os.makedirs(server_model_folder) if not model_filename: model_filename = "model.pdmodel" if not params_filename: params_filename = "params.pdiparams" new_model_path = os.path.join(server_model_folder, model_filename) new_params_path = os.path.join(server_model_folder, params_filename) with open(new_model_path, "wb") as new_model_file: new_model_file.write( main_program._remove_training_info(False) .desc.serialize_to_string()) paddle.static.save_vars( executor=executor, dirname=server_model_folder, main_program=main_program, vars=None, predicate=paddle.static.io.is_persistable, filename=params_filename) elif not show_proto: if not os.path.exists(server_model_folder): os.makedirs(server_model_folder) if encrypt_conf == None: aes_cipher = CipherFactory.create_cipher() else: #todo: more encryption algorithms pass key = CipherUtils.gen_key_to_file(128, "key") params = fluid.io.save_persistables( executor=executor, dirname=None, main_program=main_program) model = main_program._remove_training_info( False).desc.serialize_to_string() if not os.path.exists(server_model_folder): os.makedirs(server_model_folder) os.chdir(server_model_folder) aes_cipher.encrypt_to_file(params, key, "encrypt_params") aes_cipher.encrypt_to_file(model, key, "encrypt_model") os.chdir("..") config = model_conf.GeneralModelConfig() if feed_alias_names is None: feed_alias = list(feed_var_dict.keys()) else: feed_alias = feed_alias_names.split(',') if fetch_alias_names is None: fetch_alias = target_var_names else: fetch_alias = fetch_alias_names.split(',') if len(feed_alias) != len(feed_var_dict.keys()) or len(fetch_alias) != len( target_var_names): raise ValueError( "please check the input --feed_alias_names and --fetch_alias_names, should be same size with feed_vars and fetch_vars" ) for i, key in enumerate(feed_var_dict): feed_var = model_conf.FeedVar() feed_var.alias_name = feed_alias[i] feed_var.name = feed_var_dict[key].name feed_var.feed_type = var_type_conversion(feed_var_dict[key].dtype) feed_var.is_lod_tensor = feed_var_dict[ key].lod_level >= 1 if feed_var_dict[ key].lod_level is not None else False if feed_var.is_lod_tensor: feed_var.shape.extend([-1]) else: tmp_shape = [] for v in feed_var_dict[key].shape: if v >= 0: tmp_shape.append(v) feed_var.shape.extend(tmp_shape) config.feed_var.extend([feed_var]) for i, key in enumerate(target_var_names): fetch_var = model_conf.FetchVar() fetch_var.alias_name = fetch_alias[i] fetch_var.name = fetch_var_dict[key].name fetch_var.fetch_type = var_type_conversion(fetch_var_dict[key].dtype) fetch_var.is_lod_tensor = fetch_var_dict[key].lod_level >= 1 #fetch_var.is_lod_tensor = 1 if fetch_var.is_lod_tensor: fetch_var.shape.extend([-1]) else: tmp_shape = [] for v in fetch_var_dict[key].shape: if v >= 0: tmp_shape.append(v) fetch_var.shape.extend(tmp_shape) config.fetch_var.extend([fetch_var]) if show_proto: print(str(config)) return try: save_dirname = os.path.normpath(client_config_folder) os.makedirs(save_dirname) except OSError as e: if e.errno != errno.EEXIST: raise with open("{}/serving_client_conf.prototxt".format(client_config_folder), "w") as fout: fout.write(str(config)) with open("{}/serving_server_conf.prototxt".format(server_model_folder), "w") as fout: fout.write(str(config)) with open("{}/serving_client_conf.stream.prototxt".format( client_config_folder), "wb") as fout: fout.write(config.SerializeToString()) with open("{}/serving_server_conf.stream.prototxt".format( server_model_folder), "wb") as fout: fout.write(config.SerializeToString()) def inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None, encryption=False, key_len=128, encrypt_conf=None, show_proto=False, feed_alias_names=None, fetch_alias_names=None): paddle.enable_static() place = fluid.CPUPlace() exe = fluid.Executor(place) inference_program, feed_target_names, fetch_targets = \ fluid.io.load_inference_model(dirname=dirname, executor=exe, model_filename=model_filename, params_filename=params_filename) feed_dict = { x: inference_program.global_block().var(x) for x in feed_target_names } fetch_dict = {x.name: x for x in fetch_targets} save_model(serving_server, serving_client, feed_dict, fetch_dict, inference_program, encryption, key_len, encrypt_conf, model_filename, params_filename, show_proto, feed_alias_names, fetch_alias_names) feed_names = feed_dict.keys() fetch_names = fetch_dict.keys() return feed_names, fetch_names