# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from time import time as _time import threading import multiprocessing import multiprocessing.queues import sys if sys.version_info.major == 2: import Queue elif sys.version_info.major == 3: import queue as Queue else: raise Exception("Error Python version") import numpy as np import logging import enum import os import copy _LOGGER = logging.getLogger(__name__) class ChannelDataErrcode(enum.Enum): """ ChannelData error code """ OK = 0 TIMEOUT = 1 NOT_IMPLEMENTED = 2 TYPE_ERROR = 3 RPC_PACKAGE_ERROR = 4 CLIENT_ERROR = 5 CLOSED_ERROR = 6 NO_SERVICE = 7 UNKNOW = 8 PRODUCT_ERROR = 9 class ProductErrCode(enum.Enum): """ ProductErrCode is a base class for recording business error code. product developers inherit this class and extend more error codes. """ pass class ChannelDataType(enum.Enum): DICT = 0 CHANNEL_NPDATA = 1 ERROR = 2 class ChannelData(object): def __init__(self, datatype=None, npdata=None, dictdata=None, data_id=None, log_id=None, error_code=None, error_info=None, prod_error_code=None, prod_error_info=None, client_need_profile=False): ''' There are several ways to use it: 1. ChannelData(ChannelDataType.CHANNEL_NPDATA.value, npdata, data_id, log_id) 2. ChannelData(ChannelDataType.DICT.value, dictdata, data_id, log_id) 3. ChannelData(error_code, error_info, prod_error_code, prod_error_info, data_id, log_id) Protobufs are not pickle-able: https://stackoverflow.com/questions/55344376/how-to-import-protobuf-module ''' if error_code is not None or prod_error_code is not None: if data_id is None or error_info is None: _LOGGER.critical("Failed to generate ChannelData: data_id" " and error_info cannot be None") os._exit(-1) datatype = ChannelDataType.ERROR.value else: if datatype == ChannelDataType.CHANNEL_NPDATA.value: error_code, error_info = ChannelData.check_npdata(npdata) if error_code != ChannelDataErrcode.OK.value: datatype = ChannelDataType.ERROR.value _LOGGER.error("(data_id={} log_id={}) {}".format( data_id, log_id, error_info)) elif datatype == ChannelDataType.DICT.value: error_code, error_info = ChannelData.check_dictdata(dictdata) if error_code != ChannelDataErrcode.OK.value: datatype = ChannelDataType.ERROR.value _LOGGER.error("(data_id={} log_id={}) {}".format( data_id, log_id, error_info)) else: _LOGGER.critical("(data_id={} log_id={}) datatype not match". format(data_id, log_id)) os._exit(-1) self.datatype = datatype self.npdata = npdata self.dictdata = dictdata self.id = data_id self.log_id = log_id self.error_code = error_code self.error_info = error_info self.prod_error_code = prod_error_code self.prod_error_info = prod_error_info self.client_need_profile = client_need_profile self.profile_data_set = set() def add_profile(self, profile_set): if self.client_need_profile is False: self.client_need_profile = True self.profile_data_set |= profile_set @staticmethod def check_dictdata(dictdata): error_code = ChannelDataErrcode.OK.value error_info = None if isinstance(dictdata, list): # batch data for sample in dictdata: if not isinstance(sample, dict): error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = "Failed to check data: the type of " \ "data must be dict, but get {}.".format(type(sample)) break elif not isinstance(dictdata, dict): # batch size = 1 error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = "Failed to check data: the type of data must " \ "be dict, but get {}.".format(type(dictdata)) return error_code, error_info @staticmethod def check_batch_npdata(batch): error_code = ChannelDataErrcode.OK.value error_info = None for npdata in batch: error_code, error_info = ChannelData.check_npdata(npdata) if error_code != ChannelDataErrcode.OK.value: break return error_code, error_info @staticmethod def check_npdata(npdata): error_code = ChannelDataErrcode.OK.value error_info = None if isinstance(npdata, list): # batch data for sample in npdata: if not isinstance(sample, dict): error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = "Failed to check data: the " \ "value of data must be dict, but get {}.".format( type(sample)) break for _, value in sample.items(): if not isinstance(value, np.ndarray): error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = "Failed to check data: the" \ " value of data must be np.ndarray, but get {}.".format( type(value)) return error_code, error_info elif isinstance(npdata, dict): # batch_size = 1 for _, value in npdata.items(): if not isinstance(value, np.ndarray): error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = "Failed to check data: the value " \ "of data must be np.ndarray, but get {}.".format( type(value)) break else: error_code = ChannelDataErrcode.TYPE_ERROR.value error_info = "Failed to check data: the value of data " \ "must be dict, but get {}.".format(type(npdata)) return error_code, error_info def parse(self): feed = None if self.datatype == ChannelDataType.CHANNEL_NPDATA.value: # return narray feed = self.npdata elif self.datatype == ChannelDataType.DICT.value: # return dict feed = self.dictdata else: _LOGGER.critical("Failed to parse channeldata: error " \ "type({}) in datatype.".format(self.datatype)) os._exit(-1) return feed def __cmp__(self, other): if self.id < other.id: return -1 elif self.id == other.id: return 0 else: return 1 def __str__(self): return "type[{}], error_code[{}], data_id[{}], log_id[{}]".format( ChannelDataType(self.datatype).name, self.error_code, self.id, self.log_id) class ProcessChannel(object): """ (Process version) The channel used for communication between Ops. 1. Support multiple different Op feed data (multiple producer) Different types of data will be packaged through the data ID 2. Support multiple different Op fetch data (multiple consumer) Only when all types of Ops get the data of the same ID, the data will be poped; The Op of the same type will not get the data of the same ID. 3. Function front support timeout param to make auto-batching. Note: 1. The ID of the data in the channel must be different. 2. The function add_producer() and add_consumer() are not thread safe, and can only be called during initialization. There are two buffers and one queue in Channel: op_A \ / op_D op_B - a. input_buf -> b. queue -> c. output_buf - op_E op_C / \ op_F a. In input_buf, the input of multiple predecessor Ops is packed by data ID. b. The packed data will be stored in queue. c. In order to support multiple successor Ops to retrieve data, output_buf maintains the data obtained from queue. """ def __init__(self, manager, name=None, maxsize=0): # For queue multiprocess: after putting an object on # an empty queue there may be an infinitessimal delay # before the queue's :meth:`~Queue.empty` # see more: # - https://bugs.python.org/issue18277 # - https://hg.python.org/cpython/rev/860fc6a2bd21 self._que = manager.PriorityQueue(maxsize=maxsize) self._maxsize = maxsize self.name = name self._stop = manager.Value('i', 0) self._cv = multiprocessing.Condition() self._producers = [] self._pushed_producer_count = manager.dict() # {data_id: count} self._input_buf = manager.dict() # {data_id: {op_name: data}} self._reset_max_cursor = 1000000000000000000 self._consumer_cursors = manager.dict() # {op_name: cursor} self._cursor_count = manager.dict() # {cursor: count} self._base_cursor = manager.Value('i', 0) self._output_buf = manager.list() def get_maxsize(self): return self._maxsize def size(self): return self._que.qsize() def get_producers(self): return self._producers def get_consumers(self): return self._consumer_cursors.keys() def _log(self, info_str): return "[{}] {}".format(self.name, info_str) def add_producer(self, op_name): """ not thread safe, and can only be called during initialization. """ if op_name in self._producers: _LOGGER.critical( self._log("Failed to add producer: producer({})" \ " is already in channel".format(op_name))) os._exit(-1) self._producers.append(op_name) _LOGGER.debug(self._log("Succ add a producer: {}".format(op_name))) def add_consumer(self, op_name): """ not thread safe, and can only be called during initialization. """ if op_name in self._consumer_cursors: _LOGGER.critical( self._log("Failed to add consumer: consumer({})" \ " is already in channel".format(op_name))) os._exit(-1) self._consumer_cursors[op_name] = 0 if self._cursor_count.get(0) is None: self._cursor_count[0] = 0 self._cursor_count[0] += 1 _LOGGER.debug(self._log("Succ add a consumer: {}".format(op_name))) def push(self, channeldata, op_name=None): _LOGGER.debug( self._log("(data_id={} log_id={}) Op({}) Pushing data".format( channeldata.id, channeldata.log_id, op_name))) if len(self._producers) == 0: _LOGGER.critical( self._log( "(data_id={} log_id={}) Op({}) Failed to push data: expected number" " of producers to be greater than 0, but the it is 0.". format(channeldata.id, channeldata.log_id, op_name))) os._exit(-1) elif len(self._producers) == 1: with self._cv: while self._stop.value == 0: try: self._que.put({op_name: channeldata}, timeout=0) break except Queue.Full: self._cv.wait() if self._stop.value == 1: raise ChannelStopError() self._cv.notify_all() _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Pushed data into internal queue.". format(channeldata.id, channeldata.log_id, op_name))) return True elif op_name is None: _LOGGER.critical( self._log( "(data_id={} log_id={}) Op({}) Failed to push data: there are multiple " "producers, so op_name cannot be None.".format( channeldata.id, channeldata.log_id, op_name))) os._exit(-1) producer_num = len(self._producers) data_id = channeldata.id log_id = channeldata.log_id put_data = None with self._cv: if data_id not in self._input_buf: self._input_buf[data_id] = { name: None for name in self._producers } self._pushed_producer_count[data_id] = 0 # see: https://docs.python.org/3.6/library/multiprocessing.html?highlight=multiprocess#proxy-objects # self._input_buf[data_id][op_name] = channeldata tmp_input_buf = self._input_buf[data_id] tmp_input_buf[op_name] = channeldata self._input_buf[data_id] = tmp_input_buf if self._pushed_producer_count[data_id] + 1 == producer_num: put_data = self._input_buf[data_id] self._input_buf.pop(data_id) self._pushed_producer_count.pop(data_id) else: self._pushed_producer_count[data_id] += 1 if put_data is None: _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Pushed data into input_buffer.". format(data_id, log_id, op_name))) else: while self._stop.value == 0: try: self._que.put(put_data, timeout=0) break except Queue.Empty: self._cv.wait() if self._stop.value == 1: raise ChannelStopError() _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Pushed data into internal_queue.". format(data_id, log_id, op_name))) self._cv.notify_all() return True def front(self, op_name=None, timeout=None): _LOGGER.debug( self._log("Op({}) Getting data[?]; timeout(s)={}".format(op_name, timeout))) endtime = None if timeout is not None: if timeout <= 0: timeout = None else: endtime = _time() + timeout if len(self._consumer_cursors) == 0: _LOGGER.critical( self._log( "Op({}) Failed to get data: expected number of consumers to be " \ "greater than 0, but the it is 0.".format(op_name))) os._exit(-1) elif len(self._consumer_cursors) == 1: resp = None with self._cv: while self._stop.value == 0 and resp is None: try: resp = self._que.get(timeout=0) break except Queue.Empty: if timeout is not None: remaining = endtime - _time() if remaining <= 0.0: _LOGGER.debug( self._log("Op({}) Failed to get data: " "timeout".format(op_name))) raise ChannelTimeoutError() self._cv.wait(remaining) else: self._cv.wait() if self._stop.value == 1: raise ChannelStopError() _LOGGER.debug( self._log("(data_id={} log_id={}) Op({}) Got data".format( resp.values()[0].id, resp.values()[0].log_id, op_name))) return resp elif op_name is None: _LOGGER.critical( self._log( "Op({}) Failed to get data: there are multiple consumers, " "so op_name cannot be None.".format(op_name))) os._exit(-1) # In output_buf, different Ops (according to op_name) have different # cursors. In addition, there is a base_cursor. Their difference is # the data_idx to be taken by the corresponding Op at the current # time: data_idx = consumer_cursor - base_cursor # # base_cursor consumer_B_cursor (data_idx: 3) # | | # output_buf: | data0 | data1 | data2 | data3 | # | # consumer_A_cursor (data_idx: 0) with self._cv: # When the data required by the current Op is not in output_buf, # it is necessary to obtain a data from queue and add it to output_buf. while self._stop.value == 0 and self._consumer_cursors[ op_name] - self._base_cursor.value >= len(self._output_buf): try: channeldata = self._que.get(timeout=0) self._output_buf.append(channeldata) _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Pop ready item into output_buffer". format(channeldata.values()[0].id, channeldata.values()[0].log_id, op_name))) break except Queue.Empty: if timeout is not None: remaining = endtime - _time() if remaining <= 0.0: _LOGGER.debug( self._log("Op({}) Failed to get data: timeout". format(op_name))) raise ChannelTimeoutError() self._cv.wait(remaining) else: self._cv.wait() if self._stop.value == 1: raise ChannelStopError() consumer_cursor = self._consumer_cursors[op_name] base_cursor = self._base_cursor.value data_idx = consumer_cursor - base_cursor resp = self._output_buf[data_idx] self._cursor_count[consumer_cursor] -= 1 if consumer_cursor == base_cursor and self._cursor_count[ consumer_cursor] == 0: # When all the different Ops get the data that data_idx points # to, pop the data from output_buf. self._cursor_count.pop(consumer_cursor) self._output_buf.pop(0) self._base_cursor.value += 1 # to avoid cursor overflow if self._base_cursor.value >= self._reset_max_cursor: _LOGGER.info(self._log("Reset cursor in Channel")) self._base_cursor.value -= self._reset_max_cursor for name in self._consumer_cursors.keys(): self._consumer_cursors[name] -= self._reset_max_cursor cursor_count_tmp = { cursor - self._reset_max_cursor: count for cursor, count in self._cursor_count.copy().items() } self._cursor_count.clear() for cursor, count in cursor_count_tmp.items(): self._cursor_count[cursor] = count self._consumer_cursors[op_name] += 1 new_consumer_cursor = self._consumer_cursors[op_name] if self._cursor_count.get(new_consumer_cursor) is None: self._cursor_count[new_consumer_cursor] = 0 self._cursor_count[new_consumer_cursor] += 1 self._cv.notify_all() _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Got data from output_buffer". format(resp.values()[0].id, resp.values()[0].log_id, op_name))) return resp def stop(self): _LOGGER.info(self._log("stop.")) self._stop.value = 1 with self._cv: self._cv.notify_all() class ThreadChannel(Queue.PriorityQueue): """ (Thread version)The channel used for communication between Ops. 1. Support multiple different Op feed data (multiple producer) Different types of data will be packaged through the data ID 2. Support multiple different Op fetch data (multiple consumer) Only when all types of Ops get the data of the same ID, the data will be poped; The Op of the same type will not get the data of the same ID. 3. Function front support timeout param to make auto-batching. Note: 1. The ID of the data in the channel must be different. 2. The function add_producer() and add_consumer() are not thread safe, and can only be called during initialization. There are two buffers and one queue in Channel: op_A \ / op_D op_B - a. input_buf -> b. queue -> c. output_buf - op_E op_C / \ op_F a. In input_buf, the input of multiple predecessor Ops is packed by data ID. b. The packed data will be stored in queue. c. In order to support multiple successor Ops to retrieve data, output_buf maintains the data obtained from queue. """ def __init__(self, name=None, maxsize=-1): Queue.Queue.__init__(self, maxsize=maxsize) self._maxsize = maxsize self.name = name self._stop = False self._cv = threading.Condition() self._producers = [] self._pushed_producer_count = {} # {data_id: count} self._input_buf = {} # {data_id: {op_name: data}} self._reset_max_cursor = 1000000000000000000 self._consumer_cursors = {} # {op_name: idx} self._cursor_count = {} # {cursor: count} self._base_cursor = 0 self._output_buf = [] def get_maxsize(self): return self._maxsize def size(self): return self.qsize() def get_producers(self): return self._producers def get_consumers(self): return self._consumer_cursors.keys() def _log(self, info_str): return "[{}] {}".format(self.name, info_str) def add_producer(self, op_name): """ not thread safe, and can only be called during initialization. """ if op_name in self._producers: _LOGGER.critical( self._log("Failed to add producer: producer({}) is " "already in channel".format(op_name))) os._exit(-1) self._producers.append(op_name) _LOGGER.debug(self._log("Succ add a producer: {}".format(op_name))) def add_consumer(self, op_name): """ not thread safe, and can only be called during initialization. """ if op_name in self._consumer_cursors: _LOGGER.critical( self._log("Failed to add consumer: consumer({}) is " "already in channel".format(op_name))) os._exit(-1) self._consumer_cursors[op_name] = 0 if self._cursor_count.get(0) is None: self._cursor_count[0] = 0 self._cursor_count[0] += 1 _LOGGER.debug(self._log("Succ add a consumer: {}".format(op_name))) def push(self, channeldata, op_name=None): _LOGGER.debug( self._log("(data_id={} log_id={}) Op({}) Pushing data".format( channeldata.id, channeldata.log_id, op_name))) if len(self._producers) == 0: _LOGGER.critical( self._log( "(data_id={} log_id={}) Op({}) Failed to push data: expected number of " "producers to be greater than 0, but the it is 0.".format( channeldata.id, channeldata.log_id, op_name))) os._exit(-1) elif len(self._producers) == 1: with self._cv: while self._stop is False: try: self.put({op_name: channeldata}, timeout=0) break except Queue.Full: self._cv.wait() if self._stop: raise ChannelStopError() self._cv.notify_all() _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Pushed data into internal_queue.". format(channeldata.id, channeldata.log_id, op_name))) return True elif op_name is None: _LOGGER.critical( self._log( "(data_id={} log_id={}) Op({}) Failed to push data: there are multiple" " producers, so op_name cannot be None.".format( channeldata.id, channeldata.log_id, op_name))) os._exit(-1) producer_num = len(self._producers) data_id = channeldata.id log_id = channeldata.log_id put_data = None with self._cv: if data_id not in self._input_buf: self._input_buf[data_id] = { name: None for name in self._producers } self._pushed_producer_count[data_id] = 0 self._input_buf[data_id][op_name] = channeldata if self._pushed_producer_count[data_id] + 1 == producer_num: put_data = self._input_buf[data_id] self._input_buf.pop(data_id) self._pushed_producer_count.pop(data_id) else: self._pushed_producer_count[data_id] += 1 if put_data is None: _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Pushed data into input_buffer.". format(data_id, log_id, op_name))) else: while self._stop is False: try: self.put(put_data, timeout=0) break except Queue.Empty: self._cv.wait() if self._stop: raise ChannelStopError() _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Pushed data into internal_queue.". format(data_id, log_id, op_name))) self._cv.notify_all() return True def front(self, op_name=None, timeout=None): _LOGGER.debug( self._log("Op({}) Getting data[?]; timeout(s)={}".format(op_name, timeout))) endtime = None if timeout is not None: if timeout <= 0: timeout = None else: endtime = _time() + timeout if len(self._consumer_cursors) == 0: _LOGGER.critical( self._log( "Op({}) Failed to get data: expected number of consumers to be " "greater than 0, but the it is 0.".format(op_name))) os._exit(-1) elif len(self._consumer_cursors) == 1: resp = None with self._cv: while self._stop is False and resp is None: try: resp = self.get(timeout=0) break except Queue.Empty: if timeout is not None: remaining = endtime - _time() if remaining <= 0.0: _LOGGER.debug( self._log( "Op({}) Failed to get data: timeout". format(op_name))) raise ChannelTimeoutError() self._cv.wait(remaining) else: self._cv.wait() if self._stop: raise ChannelStopError() _LOGGER.debug( self._log("(data_id={} log_id={}) Op({}) Got data".format( resp.values()[0].id, resp.values()[0].log_id, op_name))) return resp elif op_name is None: _LOGGER.critical( self._log("Op({}) Failed to get data: there are multiple " "consumers, so op_name cannot be None.".format( op_name))) os._exit(-1) # In output_buf, different Ops (according to op_name) have different # cursors. In addition, there is a base_cursor. Their difference is # the data_idx to be taken by the corresponding Op at the current # time: data_idx = consumer_cursor - base_cursor # # base_cursor consumer_B_cursor (data_idx: 3) # | | # output_buf: | data0 | data1 | data2 | data3 | # | # consumer_A_cursor (data_idx: 0) with self._cv: # When the data required by the current Op is not in output_buf, # it is necessary to obtain a data from queue and add it to output_buf. while self._stop is False and self._consumer_cursors[ op_name] - self._base_cursor >= len(self._output_buf): try: channeldata = self.get(timeout=0) self._output_buf.append(channeldata) _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Pop ready item into output_buffer". format(channeldata.values()[0].id, channeldata.values()[0].log_id, op_name))) break except Queue.Empty: if timeout is not None: remaining = endtime - _time() if remaining <= 0.0: _LOGGER.debug( self._log("Op({}) Failed to get data: timeout". format(op_name))) raise ChannelTimeoutError() self._cv.wait(remaining) else: self._cv.wait() if self._stop: raise ChannelStopError() consumer_cursor = self._consumer_cursors[op_name] base_cursor = self._base_cursor data_idx = consumer_cursor - base_cursor resp = None self._cursor_count[consumer_cursor] -= 1 if consumer_cursor == base_cursor and self._cursor_count[ consumer_cursor] == 0: # When all the different Ops get the data that data_idx points # to, pop the data from output_buf. self._cursor_count.pop(consumer_cursor) resp = self._output_buf.pop(0) self._base_cursor += 1 # to avoid cursor overflow if self._base_cursor >= self._reset_max_cursor: _LOGGER.info(self._log("Reset cursor in Channel")) self._base_cursor -= self._reset_max_cursor for name in self._consumer_cursors: self._consumer_cursors[name] -= self._reset_max_cursor self._cursor_count = { cursor - self._reset_max_cursor: count for cursor, count in self._cursor_count.items() } else: resp = copy.deepcopy(self._output_buf[data_idx]) self._consumer_cursors[op_name] += 1 new_consumer_cursor = self._consumer_cursors[op_name] if self._cursor_count.get(new_consumer_cursor) is None: self._cursor_count[new_consumer_cursor] = 0 self._cursor_count[new_consumer_cursor] += 1 self._cv.notify_all() _LOGGER.debug( self._log( "(data_id={} log_id={}) Op({}) Got data from output_buffer". format(resp.values()[0].id, resp.values()[0].log_id, op_name))) return resp def stop(self): _LOGGER.info(self._log("stop.")) self._stop = True with self._cv: self._cv.notify_all() class ChannelTimeoutError(RuntimeError): def __init__(self): pass class ChannelStopError(RuntimeError): def __init__(self): pass