rm profile_log export CUDA_VISIBLE_DEVICES=0,1,2,3 export FLAGS_profile_server=1 export FLAGS_profile_client=1 export FLAGS_serving_latency=1 python -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim --ir_optim 2> elog > stdlog & hostname=`echo $(hostname)|awk -F '.baidu.com' '{print $1}'` sleep 5 for thread_num in 1 4 8 16 do for batch_size in 1 4 16 64 do job_bt=`date '+%Y%m%d%H%M%S'` python benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1 echo "model_name:" $1 echo "thread_num:" $thread_num echo "batch_size:" $batch_size echo "=================Done====================" echo "model_name:$1" >> profile_log_$1 echo "batch_size:$batch_size" >> profile_log_$1 job_et=`date '+%Y%m%d%H%M%S'` awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY_USE:", max}' gpu_use.log >> profile_log_$1 monquery -n ${hostname} -i GPU_AVERAGE_UTILIZATION -s $job_bt -e $job_et -d 10 > gpu_log_file_${job_bt} monquery -n ${hostname} -i CPU_USER -s $job_bt -e $job_et -d 10 > cpu_log_file_${job_bt} cpu_num=$(cat /proc/cpuinfo | grep processor | wc -l) gpu_num=$(nvidia-smi -L|wc -l) python ../util/show_profile.py profile $thread_num >> profile_log_$1 tail -n 8 profile >> profile_log_$1 echo "" >> profile_log_$1 done done ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9