# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import json import sys import os from elastic_ctr_api import ElasticCTRAPI BATCH_SIZE = 10 SERVING_IP = "127.0.0.1" SLOT_CONF_FILE = "./conf/slot.conf" CTR_EMBEDDING_TABLE_SIZE = 100000001 SLOTS = [] def str2long(str): if sys.version_info[0] == 2: return long(str) elif sys.version_info[0] == 3: return int(str) def tied_rank(x): """ Computes the tied rank of elements in x. This function computes the tied rank of elements in x. Parameters ---------- x : list of numbers, numpy array Returns ------- score : list of numbers The tied rank f each element in x """ sorted_x = sorted(zip(x,range(len(x)))) r = [0 for k in x] cur_val = sorted_x[0][0] last_rank = 0 for i in range(len(sorted_x)): if cur_val != sorted_x[i][0]: cur_val = sorted_x[i][0] for j in range(last_rank, i): r[sorted_x[j][1]] = float(last_rank+1+i)/2.0 last_rank = i if i==len(sorted_x)-1: for j in range(last_rank, i+1): r[sorted_x[j][1]] = float(last_rank+i+2)/2.0 return r def auc(actual, posterior): """ Computes the area under the receiver-operater characteristic (AUC) This function computes the AUC error metric for binary classification. Parameters ---------- actual : list of binary numbers, numpy array The ground truth value posterior : same type as actual Defines a ranking on the binary numbers, from most likely to be positive to least likely to be positive. Returns ------- score : double The mean squared error between actual and posterior """ r = tied_rank(posterior) num_positive = len([0 for x in actual if x==1]) num_negative = len(actual)-num_positive sum_positive = sum([r[i] for i in range(len(r)) if actual[i]==1]) auc = ((sum_positive - num_positive*(num_positive+1)/2.0) / (num_negative*num_positive)) return auc def data_reader(data_file, samples, labels): if not os.path.exists(data_file): print("Path %s not exist" % data_file) return -1 with open(data_file, "r") as f: for line in f: sample = {} line = line.rstrip('\n') feature_slots = line.split(' ') labels.append(int(feature_slots[1])) feature_slots = feature_slots[2:] feature_slot_maps = [x.split(':') for x in feature_slots] features = [x[0] for x in feature_slot_maps] slots = [x[1] for x in feature_slot_maps] for i in range(0, len(features)): if slots[i] in sample: sample[slots[i]] = [ sample[slots[i]] + str2long(features[i]) % CTR_EMBEDDING_TABLE_SIZE ] else: sample[slots[i]] = [ str2long(features[i]) % CTR_EMBEDDING_TABLE_SIZE ] for x in SLOTS: if not x in sample: sample[x] = [0] samples.append(sample) if __name__ == "__main__": """ main """ if len(sys.argv) != 5: print( "Usage: python elastic_ctr.py SERVING_IP SERVING_PORT SLOT_CONF_FILE DATA_FILE" ) sys.exit(-1) samples = [] labels = [] SERVING_IP = sys.argv[1] SERVING_PORT = sys.argv[2] SLOT_CONF_FILE = sys.argv[3] api = ElasticCTRAPI(SERVING_IP, SERVING_PORT) ret = api.read_slots_conf(SLOT_CONF_FILE) if ret != 0: sys.exit(-1) ret = data_reader(sys.argv[4], samples, labels) print(len(samples)) correct = 0 wrong_label_1_count = 0 result_list = [] for i in range(0, len(samples) - BATCH_SIZE, BATCH_SIZE): api.clear() batch = samples[i:i + BATCH_SIZE] instances = [] for sample in batch: instance = api.add_instance() if sys.version_info[0] == 2: for k, v in sample.iteritems(): api.add_slot(instance, k, v) elif sys.version_info[0] == 3: for k, v in sample.items(): api.add_slot(instance, k, v) ret = api.inference() ret = json.loads(ret) predictions = ret["predictions"] idx = 0 for x in predictions: result_list.append(x["prob1"]) if x["prob0"] >= x["prob1"]: pred = 0 else: pred = 1 if labels[i + idx] == pred: correct += 1 else: #if labels[i + idx] == 1: # wrong_label_1_count += 1 # print("error label=1 count", wrong_label_1_count) #print("id=%d predict incorrect: pred=%d label=%d (%f %f)" % # (i + idx, pred, labels[i + idx], x["prob0"], x["prob1"])) pass idx = idx + 1 #print("Acc=%f" % (float(correct) / len(samples))) print("auc = ", auc(labels, result_list) )