# 如何编译PaddleServing
(简体中文|[English](./Compile_EN.md))
## 总体概述
编译Paddle Serving一共分以下几步:
- [编译环境准备](#1):根据模型和运行环境的需要,选择最合适的镜像
- [下载代码库](#2):下载Serving代码库,按需要执行初始化操作
- [环境变量准备](#3):根据运行环境的需要,确定Python各个环境变量,如GPU环境还需要确定Cuda,Cudnn,TensorRT等环境变量。
- [正式编译](#4): 编译`paddle-serving-server`, `paddle-serving-client`, `paddle-serving-app`相关whl包
- [安装相关whl包](#5):安装编译出的三个whl包,并设置SERVING_BIN环境变量
- [注意事项](#6)
此外,针对某些C++二次开发场景,我们也提供了OPENCV的联编方案。
## 编译环境准备
| 组件 | 版本要求 |
| :--------------------------: | :-------------------------------: |
| OS | Ubuntu16 and 18/CentOS 7 |
| gcc | 5.4.0(Cuda 10.1) and 8.2.0 |
| gcc-c++ | 5.4.0(Cuda 10.1) and 8.2.0 |
| cmake | 3.2.0 and later |
| Python | 3.6.0 and later |
| Go | 1.17.2 and later |
| git | 2.17.1 and later |
| glibc-static | 2.17 |
| openssl-devel | 1.0.2k |
| bzip2-devel | 1.0.6 and later |
| python-devel / python3-devel | 3.6.0 and later |
| sqlite-devel | 3.7.17 and later |
| patchelf | 0.9 |
| libXext | 1.3.3 |
| libSM | 1.2.2 |
| libXrender | 0.9.10 |
推荐使用Docker编译,我们已经为您准备好了Paddle Serving编译环境并配置好了上述编译依赖,详见[该文档](Docker_Images_CN.md)。
我们提供了五个环境的开发镜像,分别是CPU, CUDA10.1+CUDNN7, CUDA10.2+CUDNN7,CUDA10.2+CUDNN8, CUDA11.2+CUDNN8。我们提供了Serving开发镜像涵盖以上环境。与此同时,我们也支持Paddle开发镜像。
其中Serving镜像名是 **paddlepaddle/serving:${Serving开发镜像Tag}**(如果网络不佳可以访问**registry.baidubce.com/paddlepaddle/serving:${Serving开发镜像Tag}**), Paddle开发镜像名是 **paddlepaddle/paddle:${Paddle开发镜像Tag}**。为了防止用户对两套镜像出现混淆,我们分别解释一下两套镜像的由来。
Serving开发镜像是Serving套件为了支持各个预测环境提供的用于编译、调试预测服务的镜像,Paddle开发镜像是Paddle在官网发布的用于编译、开发、训练模型使用镜像。为了让Paddle开发者能够在同一个容器内直接使用Serving。对于上个版本就已经使用Serving用户的开发者来说,Serving开发镜像应该不会感到陌生。但对于熟悉Paddle训练框架生态的开发者,目前应该更熟悉已有的Paddle开发镜像。为了适应所有用户的不同习惯,我们对这两套镜像都做了充分的支持。
| 环境 | Serving开发镜像Tag | 操作系统 | Paddle开发镜像Tag | 操作系统 |
| :--------------------------: | :-------------------------------: | :-------------: | :-------------------: | :----------------: |
| CPU | 0.8.0-devel | Ubuntu 16.04 | 2.2.2 | Ubuntu 18.04. |
| CUDA10.1 + CUDNN7 | 0.8.0-cuda10.1-cudnn7-devel | Ubuntu 16.04 | 无 | 无 |
| CUDA10.2 + CUDNN7 | 0.8.0-cuda10.2-cudnn7-devel | Ubuntu 16.04 | 2.2.2-gpu-cuda10.2-cudnn7 | Ubuntu 16.04 |
| CUDA10.2 + CUDNN8 | 0.8.0-cuda10.2-cudnn8-devel | Ubuntu 16.04 | 无 | 无 |
| CUDA11.2 + CUDNN8 | 0.8.0-cuda11.2-cudnn8-devel | Ubuntu 16.04 | 2.2.2-gpu-cuda11.2-cudnn8 | Ubuntu 18.04 |
我们首先要针对自己所需的环境拉取相关镜像。上表**环境**一列下,除了CPU,其余(Cuda**+Cudnn**)都属于GPU环境。
您可以使用Serving开发镜像。
```
docker pull paddlepaddle/serving:${Serving开发镜像Tag}
# 如果是GPU镜像
nvidia-docker run --rm -it paddlepaddle/serving:${Serving开发镜像Tag} bash
# 如果是CPU镜像
docker run --rm -it paddlepaddle/serving:${Serving开发镜像Tag} bash
```
也可以使用Paddle开发镜像。
```
docker pull paddlepaddle/paddle:${Paddle开发镜像Tag}
# 如果是GPU镜像,需要使用nvidia-docker
nvidia-docker run --rm -it paddlepaddle/paddle:${Paddle开发镜像Tag} bash
# 如果是CPU镜像
docker run --rm -it paddlepaddle/paddle:${Paddle开发镜像Tag} bash
```
## 下载代码库
**注明: 如果您正在使用Paddle开发镜像,需要在下载代码库后手动运行`bash env_install.sh`(如代码框的第三行所示)**
```
git clone https://github.com/PaddlePaddle/Serving
cd Serving && git submodule update --init --recursive
# Paddle开发镜像需要运行如下命令,Serving开发镜像不需要运行
bash tools/paddle_env_install.sh
```
## 环境变量准备
**设置PYTHON环境变量**
如果您使用的是Serving开发镜像,请按照如下,确定好需要编译的Python版本,设置对应的环境变量,一共需要设置三个环境变量,分别是`PYTHON_INCLUDE_DIR`, `PYTHON_LIBRARIES`, `PYTHON_EXECUTABLE`。以下我们以python 3.7为例,介绍如何设置这三个环境变量。
1) 设置`PYTHON_INCLUDE_DIR`
搜索Python.h 所在的目录
```
find / -name Python.h
```
通常会有类似于`**/include/python3.7/Python.h`出现,我们只需要取它的文件夹目录就好,比如找到`/usr/include/python3.7/Python.h`,那么我们只需要`export PYTHON_INCLUDE_DIR=/usr/include/python3.7/`就好。
如果没有找到。说明 1)没有安装开发版本的Python,需重新安装 2)权限不足无法查看相关系统目录。
2) 设置`PYTHON_LIBRARIES`
搜索 libpython3.7.so 或 libpython3.7m.so
```
find / -name libpython3.7.so
find / -name libpython3.7m.so
```
通常会有类似于`**/lib/libpython3.7.so`或者`**/lib/x86_64-linux-gnu/libpython3.7.so`出现,我们只需要取它的文件夹目录就好,比如找到`/usr/local/lib/libpython3.7.so`,那么我们只需要`export PYTHON_LIBRARIES=/usr/local/lib`就好。
如果没有找到,说明 1)静态编译Python,需要重新安装动态编译的Python 2)全县不足无法查看相关系统目录。
3) 设置`PYTHON_EXECUTABLE`
直接查看python3.7路径
```
which python3.7
```
假如结果是`/usr/local/bin/python3.7`,那么直接设置`export PYTHON_EXECUTABLE=/usr/local/bin/python3.7`。
设置好这三个环境变量至关重要,设置完成后,我们便可以执行下列操作(以下是Paddle Cuda 11.2的开发镜像的PYTHON环境,如果是其他镜像,请更改相应的`PYTHON_INCLUDE_DIR`, `PYTHON_LIBRARIES`, `PYTHON_EXECUTABLE`)。
```
# 以下三个环境变量是Paddle开发镜像Cuda11.2的环境,如其他镜像可能需要修改
export PYTHON_INCLUDE_DIR=/usr/include/python3.7m/
export PYTHON_LIBRARIES=/usr/lib/x86_64-linux-gnu/libpython3.7m.so
export PYTHON_EXECUTABLE=/usr/bin/python3.7
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin
python3.7 -m pip install -r python/requirements.txt
go env -w GO111MODULE=on
go env -w GOPROXY=https://goproxy.cn,direct
go install github.com/grpc-ecosystem/grpc-gateway/protoc-gen-grpc-gateway@v1.15.2
go install github.com/grpc-ecosystem/grpc-gateway/protoc-gen-swagger@v1.15.2
go install github.com/golang/protobuf/protoc-gen-go@v1.4.3
go install google.golang.org/grpc@v1.33.0
go env -w GO111MODULE=auto
```
如果您是GPU用户需要额外设置`CUDA_PATH`, `CUDNN_LIBRARY`, `CUDA_CUDART_LIBRARY`和`TENSORRT_LIBRARY_PATH`。
```
export CUDA_PATH='/usr/local/cuda'
export CUDNN_LIBRARY='/usr/local/cuda/lib64/'
export CUDA_CUDART_LIBRARY="/usr/local/cuda/lib64/"
export TENSORRT_LIBRARY_PATH="/usr/"
```
环境变量的含义如下表所示。
| cmake环境变量 | 含义 | GPU环境注意事项 | Docker环境是否需要 |
|-----------------------|-------------------------------------|-------------------------------|--------------------|
| CUDA_TOOLKIT_ROOT_DIR | cuda安装路径,通常为/usr/local/cuda | 全部GPU环境都需要 | 否(/usr/local/cuda) |
| CUDNN_LIBRARY | libcudnn.so.*所在目录,通常为/usr/local/cuda/lib64/ | 全部GPU环境都需要 | 否(/usr/local/cuda/lib64/) |
| CUDA_CUDART_LIBRARY | libcudart.so.*所在目录,通常为/usr/local/cuda/lib64/ | 全部GPU环境都需要 | 否(/usr/local/cuda/lib64/) |
| TENSORRT_ROOT | libnvinfer.so.*所在目录的上一级目录,取决于TensorRT安装目录 | 全部GPU环境都需要 | 否(/usr) |
## 正式编译
我们一共需要编译三个目标,分别是`paddle-serving-server`, `paddle-serving-client`, `paddle-serving-app`,其中`paddle-serving-server`需要区分CPU或者GPU版本。如果是CPU版本请运行,
### 编译paddle-serving-server
```
mkdir build_server
cd build_server
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DSERVER=ON \
-DWITH_GPU=OFF ..
make -j20
cd ..
```
如果是GPU版本,请运行,
```
mkdir build_server
cd build_server
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_PATH} \
-DCUDNN_LIBRARY=${CUDNN_LIBRARY} \
-DCUDA_CUDART_LIBRARY=${CUDA_CUDART_LIBRARY} \
-DTENSORRT_ROOT=${TENSORRT_LIBRARY_PATH} \
-DSERVER=ON \
-DWITH_GPU=ON ..
make -j20
cd ..
```
### 编译paddle-serving-client 和 paddle-serving-app
接下来,我们继续编译client和app就可以了,这两个包的编译命令在所有平台通用,不区分CPU和GPU的版本。
```
# 编译paddle-serving-client
mkdir build_client
cd build_client
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DCLIENT=ON ..
make -j10
cd ..
# 编译paddle-serving-app
mkdir build_app
cd build_app
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR \
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DAPP=ON ..
make -j10
cd ..
```
## 安装相关whl包
```
pip3.7 install -r build_server/python/dist/*.whl
pip3.7 install -r build_client/python/dist/*.whl
pip3.7 install -r build_app/python/dist/*.whl
export SERVING_BIN=${PWD}/build_server/core/general-server/serving
```
## 注意事项
注意到上一小节的最后一行`export SERVING_BIN`,运行python端Server时,会检查`SERVING_BIN`环境变量,如果想使用自己编译的二进制文件,请将设置该环境变量为对应二进制文件的路径,通常是`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`。
其中BUILD_DIR为`build_server`的绝对路径。
可以cd build_server路径下,执行`export SERVING_BIN=${PWD}/core/general-server/serving`
## 开启WITH_OPENCV选项编译C++ Server
**注意:** 只有当您需要对Paddle Serving C++部分进行二次开发,且新增的代码依赖于OpenCV库时,您才需要这样做。
编译Serving C++ Server部分,开启WITH_OPENCV选项时,需要已安装的OpenCV库,若尚未安装,可参考本文档后面的说明编译安装OpenCV库。
以开启WITH_OPENCV选项,编译CPU版本Paddle Inference Library为例,在上述编译命令基础上,加入`DOPENCV_DIR=${OPENCV_DIR}` 和 `DWITH_OPENCV=ON`选项。
``` shell
OPENCV_DIR=your_opencv_dir #`your_opencv_dir`为opencv库的安装路径。
mkdir build_server && cd build_server
cmake -DPYTHON_INCLUDE_DIR=$PYTHON_INCLUDE_DIR/ \
-DPYTHON_LIBRARIES=$PYTHON_LIBRARIES \
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
-DOPENCV_DIR=${OPENCV_DIR} \
-DWITH_OPENCV=ON \
-DSERVER=ON ..
make -j10
```
**注意:** 编译成功后,需要设置`SERVING_BIN`路径。
## 附:CMake选项说明
| 编译选项 | 说明 | 默认 |
| :--------------: | :----------------------------------------: | :--: |
| WITH_AVX | Compile Paddle Serving with AVX intrinsics | OFF |
| WITH_MKL | Compile Paddle Serving with MKL support | OFF |
| WITH_GPU | Compile Paddle Serving with NVIDIA GPU | OFF |
| WITH_TRT | Compile Paddle Serving with TensorRT | OFF |
| WITH_OPENCV | Compile Paddle Serving with OPENCV | OFF |
| CUDNN_LIBRARY | Define CuDNN library and header path | |
| CUDA_TOOLKIT_ROOT_DIR | Define CUDA PATH | |
| TENSORRT_ROOT | Define TensorRT PATH | |
| CLIENT | Compile Paddle Serving Client | OFF |
| SERVER | Compile Paddle Serving Server | OFF |
| APP | Compile Paddle Serving App package | OFF |
| PACK | Compile for whl | OFF |
### WITH_GPU选项
Paddle Serving通过PaddlePaddle预测库支持在GPU上做预测。WITH_GPU选项用于检测系统上CUDA/CUDNN等基础库,如检测到合适版本,在编译PaddlePaddle时就会编译出GPU版本的OP Kernel。
在裸机上编译Paddle Serving GPU版本,需要安装这些基础库:
- CUDA
- CuDNN
编译TensorRT版本,需要安装TensorRT库。
这里要注意的是:
1. 编译Serving所在的系统上所安装的CUDA/CUDNN等基础库版本,需要兼容实际的GPU设备。例如,Tesla V100卡至少要CUDA 9.0。如果编译时所用CUDA等基础库版本过低,由于生成的GPU代码和实际硬件设备不兼容,会导致Serving进程无法启动,或出现coredump等严重问题。
2. 运行Paddle Serving的系统上安装与实际GPU设备兼容的CUDA driver,并安装与编译期所用的CUDA/CuDNN等版本兼容的基础库。如运行Paddle Serving的系统上安装的CUDA/CuDNN的版本低于编译时所用版本,可能会导致奇怪的cuda函数调用失败等问题。
以下是PaddleServing 镜像的Cuda与Cudnn,TensorRT的匹配关系,供参考:
| | CUDA | CuDNN | TensorRT |
| :----: | :-----: | :----------: | :----: |
| post101 | 10.1 | CuDNN 7.6.5 | 6.0.1 |
| post102 | 10.2 | CuDNN 8.0.5 | 7.1.3 |
| post11 | 11.0 | CuDNN 8.0.4 | 7.1.3 |
### 附:如何让Paddle Serving编译系统探测到CuDNN库
从NVIDIA developer官网下载对应版本CuDNN并在本地解压后,在cmake编译命令中增加`-DCUDNN_LIBRARY`参数,指定CuDNN库所在路径。
## 附:编译安装OpenCV库
**注意:** 只有当您需要在C++代码中引入OpenCV库时,您才需要这样做。
* 首先需要从OpenCV官网上下载在Linux环境下源码编译的包,以OpenCV3.4.7为例,下载命令如下。
```
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
```
最终可以在当前目录下看到`opencv-3.4.7/`的文件夹。
* 编译OpenCV,设置OpenCV源码路径(`root_path`)以及安装路径(`install_path`)。进入OpenCV源码路径下,按照下面的方式进行编译。
```shell
root_path=your_opencv_root_path
install_path=${root_path}/opencv3
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
```
其中`root_path`为下载的OpenCV源码路径,`install_path`为OpenCV的安装路径,`make install`完成之后,会在该文件夹下生成OpenCV头文件和库文件,用于引用OpenCV库的代码的编译。
最终在安装路径下的文件结构如下所示。
```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```