# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: Host a trained paddle model with one line command Example: python -m paddle_serving_server.serve --model ./serving_server_model --port 9292 """ import argparse import os import json import base64 import time from multiprocessing import Process from flask import Flask, request import sys if sys.version_info.major == 2: from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer elif sys.version_info.major == 3: from http.server import BaseHTTPRequestHandler, HTTPServer def serve_args(): parser = argparse.ArgumentParser("serve") parser.add_argument( "--thread", type=int, default=2, help="Concurrency of server") parser.add_argument( "--port", type=int, default=9292, help="Port of the starting gpu") parser.add_argument( "--device", type=str, default="gpu", help="Type of device") parser.add_argument( "--gpu_ids", type=str, default="", nargs="+", help="gpu ids") parser.add_argument( "--op_num", type=int, default=0, nargs="+", help="Number of each op") parser.add_argument( "--op_max_batch", type=int, default=32, nargs="+", help="Max batch of each op") parser.add_argument( "--model", type=str, default="", nargs="+", help="Model for serving") parser.add_argument( "--workdir", type=str, default="workdir", help="Working dir of current service") parser.add_argument( "--name", type=str, default="None", help="Default service name") parser.add_argument( "--use_mkl", default=False, action="store_true", help="Use MKL") parser.add_argument( "--precision", type=str, default="fp32", help="precision mode(fp32, int8, fp16, bf16)") parser.add_argument( "--use_calib", default=False, action="store_true", help="Use TensorRT Calibration") parser.add_argument( "--mem_optim_off", default=False, action="store_true", help="Memory optimize") parser.add_argument( "--ir_optim", default=False, action="store_true", help="Graph optimize") parser.add_argument( "--max_body_size", type=int, default=512 * 1024 * 1024, help="Limit sizes of messages") parser.add_argument( "--use_encryption_model", default=False, action="store_true", help="Use encryption model") parser.add_argument( "--use_multilang", default=False, action="store_true", help="Use Multi-language-service") parser.add_argument( "--use_trt", default=False, action="store_true", help="Use TensorRT") parser.add_argument( "--use_lite", default=False, action="store_true", help="Use PaddleLite") parser.add_argument( "--use_xpu", default=False, action="store_true", help="Use XPU") parser.add_argument( "--product_name", type=str, default=None, help="product_name for authentication") parser.add_argument( "--container_id", type=str, default=None, help="container_id for authentication") parser.add_argument( "--gpu_multi_stream", default=False, action="store_true", help="Use gpu_multi_stream") return parser.parse_args() def start_gpu_card_model(gpu_mode, port, args): # pylint: disable=doc-string-missing device = "gpu" if gpu_mode == False: device = "cpu" thread_num = args.thread model = args.model mem_optim = args.mem_optim_off is False ir_optim = args.ir_optim use_mkl = args.use_mkl max_body_size = args.max_body_size use_multilang = args.use_multilang workdir = "{}_{}".format(args.workdir, port) if model == "": print("You must specify your serving model") exit(-1) for single_model_config in args.model: if os.path.isdir(single_model_config): pass elif os.path.isfile(single_model_config): raise ValueError("The input of --model should be a dir not file.") import paddle_serving_server as serving op_maker = serving.OpMaker() op_seq_maker = serving.OpSeqMaker() read_op = op_maker.create('general_reader') op_seq_maker.add_op(read_op) for idx, single_model in enumerate(model): infer_op_name = "general_infer" # 目前由于ocr的节点Det模型依赖于opencv的第三方库 # 只有使用ocr的时候,才会加入opencv的第三方库并编译GeneralDetectionOp # 故此处做特殊处理,当不满足下述情况时,所添加的op默认为GeneralInferOp # 以后可能考虑不用python脚本来生成配置 if len(model) == 2 and idx == 0 and single_model == "ocr_det_model": infer_op_name = "general_detection" else: infer_op_name = "general_infer" general_infer_op = op_maker.create(infer_op_name) op_seq_maker.add_op(general_infer_op) general_response_op = op_maker.create('general_response') op_seq_maker.add_op(general_response_op) if use_multilang: server = serving.MultiLangServer() else: server = serving.Server() server.set_op_sequence(op_seq_maker.get_op_sequence()) server.set_num_threads(thread_num) server.use_mkl(use_mkl) server.set_precision(args.precision) server.set_use_calib(args.use_calib) server.set_memory_optimize(mem_optim) server.set_ir_optimize(ir_optim) server.set_max_body_size(max_body_size) if args.use_trt and device == "gpu": server.set_trt() server.set_ir_optimize(True) if args.gpu_multi_stream and device == "gpu": server.set_gpu_multi_stream() if args.op_num: server.set_op_num(args.op_num) if args.op_max_batch: server.set_op_max_batch(args.op_max_batch) if args.use_lite: server.set_lite() server.set_device(device) if args.use_xpu: server.set_xpu() if args.product_name != None: server.set_product_name(args.product_name) if args.container_id != None: server.set_container_id(args.container_id) server.load_model_config(model) server.prepare_server( workdir=workdir, port=port, device=device, use_encryption_model=args.use_encryption_model) if gpu_mode == True: server.set_gpuid(args.gpu_ids) server.run_server() def start_multi_card(args, serving_port=None): # pylint: disable=doc-string-missing gpus = [] if serving_port == None: serving_port = args.port if args.gpu_ids == "": gpus = [] else: #check the gpu_id is valid or not. gpus = args.gpu_ids if isinstance(gpus, str): gpus = [gpus] if "CUDA_VISIBLE_DEVICES" in os.environ: env_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",") for op_gpus_str in gpus: op_gpu_list = op_gpus_str.split(",") for ids in op_gpu_list: if ids not in env_gpus: print("gpu_ids is not in CUDA_VISIBLE_DEVICES.") exit(-1) if args.use_lite: print("run using paddle-lite.") start_gpu_card_model(False, serving_port, args) elif len(gpus) <= 0: print("gpu_ids not set, going to run cpu service.") start_gpu_card_model(False, serving_port, args) else: start_gpu_card_model(True, serving_port, args) class MainService(BaseHTTPRequestHandler): def get_available_port(self): default_port = 12000 for i in range(1000): if port_is_available(default_port + i): return default_port + i def start_serving(self): start_multi_card(args, serving_port) def get_key(self, post_data): if "key" not in post_data: return False else: key = base64.b64decode(post_data["key"].encode()) for single_model_config in args.model: if os.path.isfile(single_model_config): raise ValueError( "The input of --model should be a dir not file.") with open(single_model_config + "/key", "wb") as f: f.write(key) return True def check_key(self, post_data): if "key" not in post_data: return False else: key = base64.b64decode(post_data["key"].encode()) for single_model_config in args.model: if os.path.isfile(single_model_config): raise ValueError( "The input of --model should be a dir not file.") with open(single_model_config + "/key", "rb") as f: cur_key = f.read() if key != cur_key: return False return True def start(self, post_data): post_data = json.loads(post_data.decode('utf-8')) global p_flag if not p_flag: if args.use_encryption_model: print("waiting key for model") if not self.get_key(post_data): print("not found key in request") return False global serving_port global p serving_port = self.get_available_port() p = Process(target=self.start_serving) p.start() time.sleep(3) if p.is_alive(): p_flag = True else: return False else: if p.is_alive(): if not self.check_key(post_data): return False else: return False return True def do_POST(self): content_length = int(self.headers['Content-Length']) post_data = self.rfile.read(content_length) if self.start(post_data): response = {"endpoint_list": [serving_port]} else: response = {"message": "start serving failed"} self.send_response(200) self.send_header('Content-type', 'application/json') self.end_headers() self.wfile.write(json.dumps(response).encode()) if __name__ == "__main__": args = serve_args() for single_model_config in args.model: if os.path.isdir(single_model_config): pass elif os.path.isfile(single_model_config): raise ValueError("The input of --model should be a dir not file.") if args.name == "None": from .web_service import port_is_available if args.use_encryption_model: p_flag = False p = None serving_port = 0 server = HTTPServer(('localhost', int(args.port)), MainService) print( 'Starting encryption server, waiting for key from client, use to stop' ) server.serve_forever() else: start_multi_card(args) else: from .web_service import WebService web_service = WebService(name=args.name) web_service.load_model_config(args.model) if args.gpu_ids == "": gpus = [] else: #check the gpu_id is valid or not. gpus = args.gpu_ids if isinstance(gpus, str): gpus = [gpus] if "CUDA_VISIBLE_DEVICES" in os.environ: env_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",") for op_gpus_str in gpus: op_gpu_list = op_gpus_str.split(",") for ids in op_gpu_list: if ids not in env_gpus: print("gpu_ids is not in CUDA_VISIBLE_DEVICES.") exit(-1) if len(gpus) > 0: web_service.set_gpus(gpus) workdir = "{}_{}".format(args.workdir, args.port) web_service.prepare_server( workdir=workdir, port=args.port, device=args.device, use_lite=args.use_lite, use_xpu=args.use_xpu, ir_optim=args.ir_optim, thread_num=args.thread, precision=args.precision, use_calib=args.use_calib, use_trt=args.use_trt, gpu_multi_stream=args.gpu_multi_stream, op_num=args.op_num, op_max_batch=args.op_max_batch) web_service.run_rpc_service() app_instance = Flask(__name__) @app_instance.before_first_request def init(): web_service._launch_web_service() service_name = "/" + web_service.name + "/prediction" @app_instance.route(service_name, methods=["POST"]) def run(): return web_service.get_prediction(request) app_instance.run(host="0.0.0.0", port=web_service.port, threaded=False, processes=4)