# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing import sys import time import requests from imdb_reader import IMDBDataset from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args args = benchmark_args() def single_func(idx, resource): imdb_dataset = IMDBDataset() imdb_dataset.load_resource("./imdb.vocab") dataset = [] with open("./test_data/part-0") as fin: for line in fin: dataset.append(line.strip()) start = time.time() if args.request == "rpc": client = Client() client.load_client_config(args.model) client.connect([args.endpoint]) for i in range(1000): if args.batch_size >= 1: feed_batch = [] for bi in range(args.batch_size): word_ids, label = imdb_dataset.get_words_and_label(dataset[ bi]) feed_batch.append({"words": word_ids}) result = client.predict(feed=feed_batch, fetch=["prediction"]) if result is None: raise ("predict failed.") else: print("unsupport batch size {}".format(args.batch_size)) elif args.request == "http": if args.batch_size >= 1: feed_batch = [] for bi in range(args.batch_size): feed_batch.append({"words": dataset[bi]}) r = requests.post( "http://{}/imdb/prediction".format(args.endpoint), json={"feed": feed_batch, "fetch": ["prediction"]}) if r.status_code != 200: print('HTTP status code -ne 200') raise ("predict failed.") else: print("unsupport batch size {}".format(args.batch_size)) end = time.time() return [[end - start]] multi_thread_runner = MultiThreadRunner() result = multi_thread_runner.run(single_func, args.thread, {}) avg_cost = 0 for cost in result[0]: avg_cost += cost print("total cost {} s of each thread".format(avg_cost / args.thread))