# Paddle Serving Paddle Serving是PaddlePaddle的在线预估服务框架,能够帮助开发者轻松实现从移动端、服务器端调用深度学习模型的远程预测服务。当前Paddle Serving以支持PaddlePaddle训练的模型为主,可以与Paddle训练框架联合使用,快速部署预估服务。 # 客户端快速上手 Paddle Serving当前的develop版本支持轻量级Python API进行快速预测,我们假设远程已经部署的Paddle Serving的文本分类模型,您可以在自己的服务器快速安装客户端并进行快速预测。 ## 客户端安装 ``` pip install paddle-serving-client ``` ## 训练过程中保存Serving的配置 ``` import os import sys import paddle import logging import paddle.fluid as fluid import paddle_serving as serving logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) def load_vocab(filename): vocab = {} with open(filename) as f: wid = 0 for line in f: vocab[line.strip()] = wid wid += 1 vocab[""] = len(vocab) return vocab if __name__ == "__main__": vocab = load_vocab('imdb.vocab') dict_dim = len(vocab) data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") dataset = fluid.DatasetFactory().create_dataset() filelist = ["train_data/%s" % x for x in os.listdir("train_data")] dataset.set_use_var([data, label]) pipe_command = "python imdb_reader.py" dataset.set_pipe_command(pipe_command) dataset.set_batch_size(4) dataset.set_filelist(filelist) dataset.set_thread(10) from nets import cnn_net avg_cost, acc, prediction = cnn_net(data, label, dict_dim) optimizer = fluid.optimizer.SGD(learning_rate=0.01) optimizer.minimize(avg_cost) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) epochs = 30 save_dirname = "cnn_model" for i in range(epochs): exe.train_from_dataset(program=fluid.default_main_program(), dataset=dataset, debug=False) logger.info("TRAIN --> pass: {}".format(i)) fluid.io.save_inference_model("%s/epoch%d.model" % (save_dirname, i), [data.name, label.name], [acc], exe) serving.save_model("%s/epoch%d.model" % (save_dirname, i), "client_config{}".format(i), {"words": data, "label": label}, {"acc": acc, "cost": avg_cost, "prediction": prediction}) ``` ## 启动服务 TBA ## 客户端访问 ``` python from paddle_serving import Client import sys client = Client() client.load_client_config(sys.argv[1]) client.connect(["127.0.0.1:9292"]) for line in sys.stdin: group = line.strip().split() words = [int(x) for x in group[1:int(group[0])]] label = [int(group[-1])] feed = {"words": words, "label": label} fetch = ["acc", "cost", "prediction"] fetch_map = client.predict(feed=feed, fetch=fetch) print("{} {}".format(fetch_map["prediction"][1], label[0])) ``` ## 完成操作截屏 TBA # 文档 [设计文档](doc/DESIGN.md) [从零开始写一个预测服务](doc/CREATING.md) [编译安装](doc/INSTALL.md) [FAQ](doc/FAQ.md)