# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_server_gpu.pipeline import Op, RequestOp, ResponseOp from paddle_serving_server_gpu.pipeline import PipelineServer from paddle_serving_server_gpu.pipeline.proto import pipeline_service_pb2 from paddle_serving_server_gpu.pipeline.channel import ChannelDataEcode import numpy as np import cv2 import time import base64 import json from paddle_serving_app.reader import OCRReader from paddle_serving_app.reader import Sequential, ResizeByFactor from paddle_serving_app.reader import Div, Normalize, Transpose from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes import time import re import base64 import logging _LOGGER = logging.getLogger() class DetOp(Op): def init_op(self): self.det_preprocess = Sequential([ ResizeByFactor(32, 960), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose( (2, 0, 1)) ]) self.filter_func = FilterBoxes(10, 10) self.post_func = DBPostProcess({ "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, "unclip_ratio": 1.5, "min_size": 3 }) def preprocess(self, input_dicts): (_, input_dict), = input_dicts.items() data = base64.b64decode(input_dict["image"].encode('utf8')) data = np.fromstring(data, np.uint8) # Note: class variables(self.var) can only be used in process op mode self.im = cv2.imdecode(data, cv2.IMREAD_COLOR) self.ori_h, self.ori_w, _ = self.im.shape det_img = self.det_preprocess(self.im) _, self.new_h, self.new_w = det_img.shape return {"image": det_img} def postprocess(self, input_dicts, fetch_dict): det_out = fetch_dict["concat_1.tmp_0"] ratio_list = [ float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w ] dt_boxes_list = self.post_func(det_out, [ratio_list]) dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w]) out_dict = {"dt_boxes": dt_boxes, "image": self.im} return out_dict class RecOp(Op): def init_op(self): self.ocr_reader = OCRReader() self.get_rotate_crop_image = GetRotateCropImage() self.sorted_boxes = SortedBoxes() def preprocess(self, input_dicts): (_, input_dict), = input_dicts.items() im = input_dict["image"] dt_boxes = input_dict["dt_boxes"] dt_boxes = self.sorted_boxes(dt_boxes) feed_list = [] img_list = [] max_wh_ratio = 0 for i, dtbox in enumerate(dt_boxes): boximg = self.get_rotate_crop_image(im, dt_boxes[i]) img_list.append(boximg) h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for img in img_list: norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) feed = {"image": norm_img} feed_list.append(feed) return feed_list def postprocess(self, input_dicts, fetch_dict): rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True) res_lst = [] for res in rec_res: res_lst.append(res[0]) res = {"res": str(res_lst)} return res read_op = RequestOp() det_op = DetOp( name="det", input_ops=[read_op], server_endpoints=["127.0.0.1:12000"], fetch_list=["concat_1.tmp_0"], client_config="ocr_det_client/serving_client_conf.prototxt", concurrency=1) rec_op = RecOp( name="rec", input_ops=[det_op], server_endpoints=["127.0.0.1:12001"], fetch_list=["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"], client_config="ocr_rec_client/serving_client_conf.prototxt", concurrency=1) response_op = ResponseOp(input_ops=[rec_op]) server = PipelineServer() server.set_response_op(response_op) server.prepare_server('config.yml') server.run_server()