export FLAGS_profile_pipeline=1 alias python3="python3.7" modelname="imagenet" use_gpu=1 gpu_id="0" benchmark_config_filename="benchmark_config.yaml" # HTTP ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 sleep 3 if [ $use_gpu -eq 1 ]; then python3 benchmark.py yaml local_predictor 1 gpu $gpu_id else python3 benchmark.py yaml local_predictor 1 cpu fi rm -rf profile_log_$modelname for thread_num in 1 do for batch_size in 1 do echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname rm -rf PipelineServingLogs rm -rf cpu_utilization.py python3 resnet50_web_service.py >web.log 2>&1 & sleep 3 nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py python3 benchmark.py run http $thread_num $batch_size python3 cpu_utilization.py >>profile_log_$modelname python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 python3 benchmark.py dump benchmark.log benchmark.tmp mv benchmark.tmp benchmark.log awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname cat benchmark.log >> profile_log_$modelname python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname #rm -rf gpu_use.log gpu_utilization.log done done