// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "demo-serving/image_class.pb.h" #include "predictor/builtin_format.pb.h" #include "predictor/common/inner_common.h" #include "predictor/framework/channel.h" #include "predictor/framework/op_repository.h" #include "predictor/op/op.h" // opencv #include "opencv/cv.h" #include "opencv/cv.hpp" #include "opencv/cxcore.h" #include "opencv/highgui.h" #ifdef BCLOUD #ifdef WITH_GPU #include "paddle/paddle_inference_api.h" #else #include "paddle/fluid/inference/api/paddle_inference_api.h" #endif #else #include "paddle_inference_api.h" // NOLINT #endif namespace baidu { namespace paddle_serving { namespace serving { struct ReaderOutput { std::vector tensors; void Clear() { size_t tensor_count = tensors.size(); for (size_t ti = 0; ti < tensor_count; ++ti) { tensors[ti].shape.clear(); } tensors.clear(); } std::string ShortDebugString() const { return "Not implemented!"; } }; class ReaderOp : public baidu::paddle_serving::predictor::OpWithChannel { public: typedef std::vector TensorVector; DECLARE_OP(ReaderOp); int inference(); private: cv::Mat _image_8u_tmp; cv::Mat _image_8u_rgb; std::vector _image_vec_tmp; }; } // namespace serving } // namespace paddle_serving } // namespace baidu