# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import paddle import logging import paddle.fluid as fluid import paddle_serving as serving logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) def load_vocab(filename): vocab = {} with open(filename) as f: wid = 0 for line in f: vocab[line.strip()] = wid wid += 1 vocab[""] = len(vocab) return vocab if __name__ == "__main__": vocab = load_vocab('imdb.vocab') dict_dim = len(vocab) data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") dataset = fluid.DatasetFactory().create_dataset() filelist = ["train_data/%s" % x for x in os.listdir("train_data")] dataset.set_use_var([data, label]) pipe_command = "python imdb_reader.py" dataset.set_pipe_command(pipe_command) dataset.set_batch_size(4) dataset.set_filelist(filelist) dataset.set_thread(10) from nets import cnn_net avg_cost, acc, prediction = cnn_net(data, label, dict_dim) optimizer = fluid.optimizer.SGD(learning_rate=0.01) optimizer.minimize(avg_cost) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) epochs = 30 save_dirname = "cnn_model" for i in range(epochs): exe.train_from_dataset(program=fluid.default_main_program(), dataset=dataset, debug=False) logger.info("TRAIN --> pass: {}".format(i)) fluid.io.save_inference_model("%s/epoch%d.model" % (save_dirname, i), [data.name, label.name], [acc], exe) serving.save_model("%s/epoch%d.model" % (save_dirname, i), "client_config{}".format(i), {"words": data, "label": label}, {"acc": acc, "cost": avg_cost, "prediction": prediction})