# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args import time import paddle import sys import requests args = benchmark_args() def single_func(idx, resource): if args.request == "rpc": client = Client() client.load_client_config(args.model) client.connect([args.endpoint]) train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=1) start = time.time() for data in train_reader(): fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["price"]) end = time.time() return [[end - start]] elif args.request == "http": train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=1) start = time.time() for data in train_reader(): r = requests.post('http://{}/uci/prediction'.format(args.endpoint), data = {"x": data[0]}) end = time.time() return [[end - start]] multi_thread_runner = MultiThreadRunner() result = multi_thread_runner.run(single_func, args.thread, {}) print(result)