# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from paddle_serving_client import Client from paddle_serving_client.metric import auc from paddle_serving_client.utils import MultiThreadRunner import time def predict(thr_id, resource): client = Client() client.load_client_config(resource["conf_file"]) client.connect(resource["server_endpoint"]) thread_num = resource["thread_num"] file_list = resource["filelist"] line_id = 0 prob = [] label_list = [] dataset = [] for fn in file_list: fin = open(fn) for line in fin: if line_id % thread_num == thr_id - 1: group = line.strip().split() words = [int(x) for x in group[1:int(group[0])]] label = [int(group[-1])] feed = {"words": words, "label": label} dataset.append(feed) line_id += 1 fin.close() start = time.time() fetch = ["acc", "cost", "prediction"] infer_time_list = [] for inst in dataset: fetch_map = client.predict(feed=inst, fetch=fetch, debug=True) prob.append(fetch_map["prediction"][1]) label_list.append(label[0]) infer_time_list.append(fetch_map["infer_time"]) end = time.time() client.release() return [prob, label_list, [sum(infer_time_list)], [end - start]] if __name__ == '__main__': conf_file = sys.argv[1] data_file = sys.argv[2] resource = {} resource["conf_file"] = conf_file resource["server_endpoint"] = ["127.0.0.1:9292"] resource["filelist"] = [data_file] resource["thread_num"] = int(sys.argv[3]) thread_runner = MultiThreadRunner() result = thread_runner.run(predict, int(sys.argv[3]), resource) print(result[-1]) print("{}\t{}".format(sys.argv[3], sum(result[-1]) / len(result[-1]))) print("{}\t{}".format(sys.argv[3], sum(result[2]) / 1000.0 / 1000.0 / len(result[2])))