# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client import sys import subprocess from multiprocessing import Pool import time def predict(p_id, p_size, data_list): client = Client() client.load_client_config(conf_file) client.connect(["127.0.0.1:8010"]) result = [] for line in data_list: group = line.strip().split() words = [int(x) for x in group[1:int(group[0])]] label = [int(group[-1])] feed = {"words": words, "label": label} fetch = ["acc", "cost", "prediction"] fetch_map = client.predict(feed=feed, fetch=fetch) #print("{} {}".format(fetch_map["prediction"][1], label[0])) result.append([fetch_map["prediction"][1], label[0]]) return result def predict_multi_thread(p_num): data_list = [] with open(data_file) as f: for line in f.readlines(): data_list.append(line) start = time.time() p = Pool(p_num) p_size = len(data_list) / p_num result_list = [] for i in range(p_num): result_list.append( p.apply_async(predict, [i, p_size, data_list[i * p_size:(i + 1) * p_size]])) p.close() p.join() for i in range(p_num): result = result_list[i].get() for j in result: print("{} {}".format(j[0], j[1])) cost = time.time() - start print("{} threads cost {}".format(p_num, cost)) if __name__ == '__main__': conf_file = sys.argv[1] data_file = sys.argv[2] p_num = int(sys.argv[3]) predict_multi_thread(p_num)