import paddle.fluid as fluid import math dense_feature_dim = 13 def ctr_dnn_model_dataset(dense_input, sparse_inputs, label, embedding_size, sparse_feature_dim): def embedding_layer(input): emb = fluid.layers.embedding( input=input, is_sparse=True, is_distributed=False, size=[sparse_feature_dim, embedding_size], param_attr=fluid.ParamAttr(name="SparseFeatFactors", initializer=fluid.initializer.Uniform())) return fluid.layers.sequence_pool(input=emb, pool_type='sum') sparse_embed_seq = list(map(embedding_layer, sparse_inputs)) concated = fluid.layers.concat(sparse_embed_seq, axis=1) fc1 = fluid.layers.fc(input=concated, size=400, act='relu', param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal( scale=1 / math.sqrt(concated.shape[1])))) fc2 = fluid.layers.fc(input=fc1, size=400, act='relu', param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal( scale=1 / math.sqrt(fc1.shape[1])))) fc3 = fluid.layers.fc(input=fc2, size=400, act='relu', param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal( scale=1 / math.sqrt(fc2.shape[1])))) predict = fluid.layers.fc(input=fc3, size=2, act='softmax', param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal( scale=1 / math.sqrt(fc3.shape[1])))) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.reduce_sum(cost) accuracy = fluid.layers.accuracy(input=predict, label=label) auc_var, batch_auc_var, auc_states = \ fluid.layers.auc(input=predict, label=label, num_thresholds=2 ** 12, slide_steps=20) return predict, avg_cost, auc_var, batch_auc_var