// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "demo-serving/op/classify_op.h" #include "demo-serving/op/reader_op.h" #include "predictor/framework/infer.h" #include "predictor/framework/memory.h" namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::predictor::format::DensePrediction; using baidu::paddle_serving::predictor::image_classification::ClassifyResponse; using baidu::paddle_serving::predictor::InferManager; int ClassifyOp::inference() { const ReaderOutput* reader_out = get_depend_argument("image_reader_op"); if (!reader_out) { LOG(ERROR) << "Failed mutable depended argument, op:" << "reader_op"; return -1; } const TensorVector* in = &reader_out->tensors; TensorVector* out = butil::get_object(); if (!out) { LOG(ERROR) << "Failed get tls output object failed"; return -1; } if (in->size() != 1) { LOG(ERROR) << "Samples should have been packed into a single tensor"; return -1; } int batch_size = in->at(0).shape[0]; // call paddle fluid model for inferencing if (InferManager::instance().infer( IMAGE_CLASSIFICATION_MODEL_NAME, in, out, batch_size)) { LOG(ERROR) << "Failed do infer in fluid model: " << IMAGE_CLASSIFICATION_MODEL_NAME; return -1; } if (out->size() != in->size()) { LOG(ERROR) << "Output size not eq input size: " << in->size() << out->size(); return -1; } // copy output tensor into response ClassifyResponse* res = mutable_data(); const paddle::PaddleTensor& out_tensor = (*out)[0]; #if 0 int out_shape_size = out_tensor.shape.size(); LOG(ERROR) << "out_tensor.shpae"; for (int i = 0; i < out_shape_size; ++i) { LOG(ERROR) << out_tensor.shape[i] << ":"; } if (out_shape_size != 2) { return -1; } #endif int sample_size = out_tensor.shape[0]; #if 0 LOG(ERROR) << "Output sample size " << sample_size; #endif for (uint32_t si = 0; si < sample_size; si++) { DensePrediction* ins = res->add_predictions(); if (!ins) { LOG(ERROR) << "Failed append new out tensor"; return -1; } // assign output data uint32_t data_size = out_tensor.shape[1]; float* data = reinterpret_cast(out_tensor.data.data() + si * sizeof(float) * data_size); for (uint32_t di = 0; di < data_size; ++di) { ins->add_categories(data[di]); } } // release out tensor object resource size_t out_size = out->size(); for (size_t oi = 0; oi < out_size; ++oi) { (*out)[oi].shape.clear(); } out->clear(); butil::return_object(out); return 0; } DEFINE_OP(ClassifyOp); } // namespace serving } // namespace paddle_serving } // namespace baidu