# -*- coding: utf-8 -*- # # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from __future__ import unicode_literals, absolute_import import os import sys import time import json import requests from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args, show_latency from paddle_serving_app.reader import ChineseBertReader from paddle_serving_app.reader import * import numpy as np args = benchmark_args() def single_func(idx, resource): img = "./000000570688.jpg" profile_flags = False latency_flags = False if os.getenv("FLAGS_profile_client"): profile_flags = True if os.getenv("FLAGS_serving_latency"): latency_flags = True latency_list = [] if args.request == "rpc": preprocess = Sequential([ File2Image(), BGR2RGB(), Div(255.0), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False), Resize(640, 640), Transpose((2, 0, 1)) ]) postprocess = RCNNPostprocess("label_list.txt", "output") client = Client() client.load_client_config(args.model) client.connect([resource["endpoint"][idx % len(resource["endpoint"])]]) start = time.time() for i in range(turns): if args.batch_size >= 1: l_start = time.time() feed_batch = [] b_start = time.time() im = preprocess(img) for bi in range(args.batch_size): print("1111batch") print(bi) feed_batch.append({ "image": im, "im_info": np.array(list(im.shape[1:]) + [1.0]), "im_shape": np.array(list(im.shape[1:]) + [1.0]) }) # im = preprocess(img) b_end = time.time() if profile_flags: sys.stderr.write( "PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format( os.getpid(), int(round(b_start * 1000000)), int(round(b_end * 1000000)))) #result = client.predict(feed=feed_batch, fetch=fetch) fetch_map = client.predict( feed=feed_batch, fetch=["multiclass_nms"]) fetch_map["image"] = img postprocess(fetch_map) l_end = time.time() if latency_flags: latency_list.append(l_end * 1000 - l_start * 1000) else: print("unsupport batch size {}".format(args.batch_size)) else: raise ValueError("not implemented {} request".format(args.request)) end = time.time() if latency_flags: return [[end - start], latency_list] else: return [[end - start]] if __name__ == '__main__': multi_thread_runner = MultiThreadRunner() endpoint_list = ["127.0.0.1:7777"] turns = 10 start = time.time() result = multi_thread_runner.run( single_func, args.thread, {"endpoint": endpoint_list, "turns": turns}) end = time.time() total_cost = end - start avg_cost = 0 for i in range(args.thread): avg_cost += result[0][i] avg_cost = avg_cost / args.thread print("total cost: {}s".format(total_cost)) print("each thread cost: {}s. ".format(avg_cost)) print("qps: {}samples/s".format(args.batch_size * args.thread * turns / total_cost)) if os.getenv("FLAGS_serving_latency"): show_latency(result[1])