# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import copy import numpy as np import math import re import sys import argparse from paddle_serving_app.reader import Sequential, Resize, Transpose, Div, Normalize class CharacterOps(object): """ Convert between text-label and text-index """ def __init__(self, config): self.character_type = config['character_type'] self.loss_type = config['loss_type'] if self.character_type == "en": self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) elif self.character_type == "ch": character_dict_path = config['character_dict_path'] self.character_str = "" with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str += line dict_character = list(self.character_str) elif self.character_type == "en_sensitive": # same with ASTER setting (use 94 char). self.character_str = string.printable[:-6] dict_character = list(self.character_str) else: self.character_str = None assert self.character_str is not None, \ "Nonsupport type of the character: {}".format(self.character_str) self.beg_str = "sos" self.end_str = "eos" if self.loss_type == "attention": dict_character = [self.beg_str, self.end_str] + dict_character self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def encode(self, text): """convert text-label into text-index. input: text: text labels of each image. [batch_size] output: text: concatenated text index for CTCLoss. [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)] length: length of each text. [batch_size] """ if self.character_type == "en": text = text.lower() text_list = [] for char in text: if char not in self.dict: continue text_list.append(self.dict[char]) text = np.array(text_list) return text def decode(self, text_index, is_remove_duplicate=False): """ convert text-index into text-label. """ char_list = [] char_num = self.get_char_num() if self.loss_type == "attention": beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") ignored_tokens = [beg_idx, end_idx] else: ignored_tokens = [char_num] for idx in range(len(text_index)): if text_index[idx] in ignored_tokens: continue if is_remove_duplicate: if idx > 0 and text_index[idx - 1] == text_index[idx]: continue char_list.append(self.character[text_index[idx]]) text = ''.join(char_list) return text def get_char_num(self): return len(self.character) def get_beg_end_flag_idx(self, beg_or_end): if self.loss_type == "attention": if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx"\ % beg_or_end return idx else: err = "error in get_beg_end_flag_idx when using the loss %s"\ % (self.loss_type) assert False, err class OCRReader(object): def __init__(self): args = self.parse_args() image_shape = [int(v) for v in args.rec_image_shape.split(",")] self.rec_image_shape = image_shape self.character_type = args.rec_char_type self.rec_batch_num = args.rec_batch_num char_ops_params = {} char_ops_params["character_type"] = args.rec_char_type char_ops_params["character_dict_path"] = args.rec_char_dict_path char_ops_params['loss_type'] = 'ctc' self.char_ops = CharacterOps(char_ops_params) def parse_args(self): parser = argparse.ArgumentParser() parser.add_argument("--rec_algorithm", type=str, default='CRNN') parser.add_argument("--rec_model_dir", type=str) parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320") parser.add_argument("--rec_char_type", type=str, default='ch') parser.add_argument("--rec_batch_num", type=int, default=1) parser.add_argument( "--rec_char_dict_path", type=str, default="./ppocr_keys_v1.txt") return parser.parse_args() def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape if self.character_type == "ch": imgW = int(32 * max_wh_ratio) h = img.shape[0] w = img.shape[1] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) seq = Sequential([ Resize(imgH, resized_w), Transpose((2, 0, 1)), Div(255), Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5], True) ]) resized_image = seq(img) padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def preprocess(self, img_list): img_num = len(img_list) norm_img_batch = [] max_wh_ratio = 0 for ino in range(img_num): h, w = img_list[ino].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(img_num): norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() return norm_img_batch[0] def postprocess(self, outputs, with_score=False): rec_res = [] rec_idx_lod = outputs["ctc_greedy_decoder_0.tmp_0.lod"] rec_idx_batch = outputs["ctc_greedy_decoder_0.tmp_0"] if with_score: predict_lod = outputs["softmax_0.tmp_0.lod"] for rno in range(len(rec_idx_lod) - 1): beg = rec_idx_lod[rno] end = rec_idx_lod[rno + 1] rec_idx_tmp = rec_idx_batch[beg:end, 0] preds_text = self.char_ops.decode(rec_idx_tmp) if with_score: beg = predict_lod[rno] end = predict_lod[rno + 1] probs = outputs["softmax_0.tmp_0"][beg:end, :] ind = np.argmax(probs, axis=1) blank = probs.shape[1] valid_ind = np.where(ind != (blank - 1))[0] score = np.mean(probs[valid_ind, ind[valid_ind]]) rec_res.append([preds_text, score]) else: rec_res.append([preds_text]) return rec_res