# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from image_reader import ImageReader from paddle_serving_client import Client from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args import time args = benchmark_args() def single_func(idx, resource): if args.request == "rpc": reader = ImageReader() fetch = ["score"] client = Client() client.load_client_config(args.model) client.connect([resource["endpoint"][idx % 4]]) start = time.time() for i in range(1000): with open("./data/n01440764_10026.JPEG") as f: img = f.read() img = reader.process_image(img).reshape(-1) fetch_map = client.predict(feed={"image": img}, fetch=["score"]) end = time.time() return [[end - start]] return [[end - start]] if __name__ == "__main__": multi_thread_runner = MultiThreadRunner() endpoint_list = [] card_num = 4 for i in range(args.thread): endpoint_list.append("127.0.0.1:{}".format(9295 + i % card_num)) result = multi_thread_runner.run(single_func, args.thread, {"endpoint": endpoint_list}) print(result)