# -*- coding: utf-8 -*- # # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_client import Client import sys import os import criteo as criteo import time from paddle_serving_client.utils import MultiThreadRunner from paddle_serving_client.utils import benchmark_args from paddle_serving_client.metric import auc py_version = sys.version_info[0] args = benchmark_args() def single_func(idx, resource): client = Client() print([resource["endpoint"][idx % len(resource["endpoint"])]]) client.load_client_config('ctr_client_conf/serving_client_conf.prototxt') client.connect(['127.0.0.1:9292']) batch = 1 buf_size = 100 dataset = criteo.CriteoDataset() dataset.setup(1000001) test_filelists = [ "./raw_data/part-%d" % x for x in range(len(os.listdir("./raw_data"))) ] reader = dataset.infer_reader(test_filelists[len(test_filelists) - 40:], batch, buf_size) if args.request == "rpc": fetch = ["prob"] start = time.time() itr = 1000 for ei in range(itr): if args.batch_size > 0: feed_batch = [] for bi in range(args.batch_size): if py_version == 2: data = reader().next() else: data = reader().__next__() feed_dict = {} feed_dict['dense_input'] = data[0][0] for i in range(1, 27): feed_dict["embedding_{}.tmp_0".format(i - 1)] = data[0][ i] feed_batch.append(feed_dict) result = client.predict(feed=feed_batch, fetch=fetch) else: print("unsupport batch size {}".format(args.batch_size)) elif args.request == "http": raise ("Not support http service.") end = time.time() qps = itr * args.batch_size / (end - start) return [[end - start, qps]] if __name__ == '__main__': multi_thread_runner = MultiThreadRunner() endpoint_list = ["127.0.0.1:9292"] #result = single_func(0, {"endpoint": endpoint_list}) start = time.time() result = multi_thread_runner.run(single_func, args.thread, {"endpoint": endpoint_list}) end = time.time() total_cost = end - start avg_cost = 0 qps = 0 for i in range(args.thread): avg_cost += result[0][i * 2 + 0] qps += result[0][i * 2 + 1] avg_cost = avg_cost / args.thread print("total cost: {}".format(total_cost)) print("average total cost {} s.".format(avg_cost)) print("qps {} ins/s".format(qps))