## Image Classification ([简体中文](./README_CN.md)|English) The example uses the ResNet50_vd model to perform the imagenet 1000 classification task. ### Get model config and sample dataset ``` sh get_model.sh ``` ### HTTP Infer launch server side ``` python image_classification_service.py ResNet50_vd_model workdir 9393 #cpu inference service ``` ``` python image_classification_service_gpu.py ResNet50_vd_model workdir 9393 #gpu inference service ``` client send inference request ``` python image_http_client.py ``` ### RPC Infer launch server side ``` python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9393 #cpu inference service ``` ``` python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9393 --gpu_ids 0 #gpu inference service ``` client send inference request ``` python image_rpc_client.py ResNet50_vd_client_config/serving_client_conf.prototxt ``` *the port of server side in this example is 9393, the sample data used by client side is in the folder ./data. These parameter can be modified in practice*