# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: Host a trained paddle model with one line command Example: python -m paddle_serving_server.serve --model ./serving_server_model --port 9292 """ import argparse import os import json import base64 import time from multiprocessing import Pool, Process from paddle_serving_server_gpu import serve_args from flask import Flask, request import sys if sys.version_info.major == 2: from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer elif sys.version_info.major == 3: from http.server import BaseHTTPRequestHandler, HTTPServer def start_gpu_card_model(index, gpuid, port, args): # pylint: disable=doc-string-missing gpuid = int(gpuid) device = "gpu" if gpuid == -1: device = "cpu" elif gpuid >= 0: port = port + index thread_num = args.thread model = args.model mem_optim = args.mem_optim_off is False ir_optim = args.ir_optim max_body_size = args.max_body_size use_multilang = args.use_multilang workdir = args.workdir if gpuid >= 0: workdir = "{}_{}".format(args.workdir, gpuid) if model == "": print("You must specify your serving model") exit(-1) for single_model_config in args.model: if os.path.isdir(single_model_config): pass elif os.path.isfile(single_model_config): raise ValueError("The input of --model should be a dir not file.") import paddle_serving_server_gpu as serving op_maker = serving.OpMaker() op_seq_maker = serving.OpSeqMaker() read_op = op_maker.create('general_reader') op_seq_maker.add_op(read_op) for idx, single_model in enumerate(model): infer_op_name = "general_infer" if len(model) == 2 and idx == 0: infer_op_name = "general_detection" else: infer_op_name = "general_infer" general_infer_op = op_maker.create(infer_op_name) op_seq_maker.add_op(general_infer_op) general_response_op = op_maker.create('general_response') op_seq_maker.add_op(general_response_op) if use_multilang: server = serving.MultiLangServer() else: server = serving.Server() server.set_op_sequence(op_seq_maker.get_op_sequence()) server.set_num_threads(thread_num) server.set_memory_optimize(mem_optim) server.set_ir_optimize(ir_optim) server.set_max_body_size(max_body_size) if args.use_trt: server.set_trt() if args.use_lite: server.set_lite() device = "arm" server.set_device(device) if args.use_xpu: server.set_xpu() if args.product_name != None: server.set_product_name(args.product_name) if args.container_id != None: server.set_container_id(args.container_id) server.load_model_config(model) server.prepare_server( workdir=workdir, port=port, device=device, use_encryption_model=args.use_encryption_model) if gpuid >= 0: server.set_gpuid(gpuid) server.run_server() def start_multi_card(args, serving_port=None): # pylint: disable=doc-string-missing gpus = "" if serving_port == None: serving_port = args.port if args.gpu_ids == "": gpus = [] else: gpus = args.gpu_ids.split(",") if "CUDA_VISIBLE_DEVICES" in os.environ: env_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",") for ids in gpus: if int(ids) >= len(env_gpus): print( " Max index of gpu_ids out of range, the number of CUDA_VISIBLE_DEVICES is {}." .format(len(env_gpus))) exit(-1) else: env_gpus = [] if args.use_lite: print("run arm server.") start_gpu_card_model(-1, -1, args) elif len(gpus) <= 0: print("gpu_ids not set, going to run cpu service.") start_gpu_card_model(-1, -1, serving_port, args) else: gpu_processes = [] for i, gpu_id in enumerate(gpus): p = Process( target=start_gpu_card_model, args=( i, gpu_id, serving_port, args, )) gpu_processes.append(p) for p in gpu_processes: p.start() for p in gpu_processes: p.join() class MainService(BaseHTTPRequestHandler): def get_available_port(self): default_port = 12000 for i in range(1000): if port_is_available(default_port + i): return default_port + i def start_serving(self): start_multi_card(args, serving_port) def get_key(self, post_data): if "key" not in post_data: return False else: key = base64.b64decode(post_data["key"].encode()) for single_model_config in args.model: if os.path.isfile(single_model_config): raise ValueError("The input of --model should be a dir not file.") with open(single_model_config + "/key", "wb") as f: f.write(key) return True def check_key(self, post_data): if "key" not in post_data: return False else: key = base64.b64decode(post_data["key"].encode()) for single_model_config in args.model: if os.path.isfile(single_model_config): raise ValueError("The input of --model should be a dir not file.") with open(single_model_config + "/key", "rb") as f: cur_key = f.read() if key != cur_key: return False return True def start(self, post_data): post_data = json.loads(post_data.decode('utf-8')) global p_flag if not p_flag: if args.use_encryption_model: print("waiting key for model") if not self.get_key(post_data): print("not found key in request") return False global serving_port global p serving_port = self.get_available_port() p = Process(target=self.start_serving) p.start() time.sleep(3) if p.is_alive(): p_flag = True else: return False else: if p.is_alive(): if not self.check_key(post_data): return False else: return False return True def do_POST(self): content_length = int(self.headers['Content-Length']) post_data = self.rfile.read(content_length) if self.start(post_data): response = {"endpoint_list": [serving_port]} else: response = {"message": "start serving failed"} self.send_response(200) self.send_header('Content-type', 'application/json') self.end_headers() self.wfile.write(json.dumps(response).encode()) if __name__ == "__main__": args = serve_args() for single_model_config in args.model: if os.path.isdir(single_model_config): pass elif os.path.isfile(single_model_config): raise ValueError("The input of --model should be a dir not file.") if args.name == "None": from .web_service import port_is_available if args.use_encryption_model: p_flag = False p = None serving_port = 0 server = HTTPServer(('localhost', int(args.port)), MainService) print( 'Starting encryption server, waiting for key from client, use to stop' ) server.serve_forever() else: start_multi_card(args) else: from .web_service import WebService web_service = WebService(name=args.name) web_service.load_model_config(args.model) gpu_ids = args.gpu_ids if gpu_ids == "": if "CUDA_VISIBLE_DEVICES" in os.environ: gpu_ids = os.environ["CUDA_VISIBLE_DEVICES"] if len(gpu_ids) > 0: web_service.set_gpus(gpu_ids) web_service.prepare_server( workdir=args.workdir, port=args.port, device=args.device, use_lite=args.use_lite, use_xpu=args.use_xpu, ir_optim=args.ir_optim) web_service.run_rpc_service() app_instance = Flask(__name__) @app_instance.before_first_request def init(): web_service._launch_web_service() service_name = "/" + web_service.name + "/prediction" @app_instance.route(service_name, methods=["POST"]) def run(): return web_service.get_prediction(request) app_instance.run(host="0.0.0.0", port=web_service.port, threaded=False, processes=4)