# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing from paddle_serving_client import HttpClient from paddle_serving_app.reader.imdb_reader import IMDBDataset import sys import numpy as np client = HttpClient() client.load_client_config(sys.argv[1]) ''' if you want use GRPC-client, set_use_grpc_client(True) or you can directly use client.grpc_client_predict(...) as for HTTP-client,set_use_grpc_client(False)(which is default) or you can directly use client.http_client_predict(...) ''' #client.set_use_grpc_client(True) ''' if you want to enable Encrypt Module,uncommenting the following line ''' #client.use_key("./key") ''' if you want to compress,uncommenting the following line ''' #client.set_response_compress(True) #client.set_request_compress(True) ''' we recommend use Proto data format in HTTP-body, set True(which is default) if you want use JSON data format in HTTP-body, set False ''' #client.set_http_proto(True) client.connect(["127.0.0.1:9292"]) # you can define any english sentence or dataset here # This example reuses imdb reader in training, you # can define your own data preprocessing easily. imdb_dataset = IMDBDataset() imdb_dataset.load_resource(sys.argv[2]) for line in sys.stdin: word_ids, label = imdb_dataset.get_words_and_label(line) word_len = len(word_ids) feed = { "words": np.array(word_ids).reshape(word_len, 1), "words.lod": [0, word_len] } #print(feed) fetch = ["prediction"] fetch_map = client.predict(feed=feed, fetch=fetch, batch=True) print(fetch_map)